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Abstract

Learning dynamics models accurately and learning policies sample-efficiently
are two important challenges for Model-Based Reinforcement Learning (MBRL).
Regarding dynamics accuracy, in contrast to the sparse dynamics exhibited in
many real world environments, most MBRL methods learn a dense dynamics model
which is vulnerable to spurious correlations and therefore generalizes poorly to
unseen states. Meanwhile, existing state abstractions can improve sample efficiency,
but their dependence on specific reward functions constrains their applications to
limited tasks. In this paper, we introduce a novel state abstraction called Task-
Independent Causal State Abstraction (TICSA). Exploiting sparsity exhibited in
the real world, the proposed method first learns a causal dynamics model that
generalizes to unexplored states. A state abstraction can then be derived from the
learned dynamics, which not only improves sample efficiency but also applies to
many tasks. Using a simulated manipulation environment and two different tasks,
we observe that both the dynamics model and policies learned by the proposed
method generalize well to unseen states and that TICSA also improves sample
efficiency compared to learning without state abstraction.

1 Introduction

The core idea of MBRL is to learn a dynamics model of the environment, which is later used to solve
the task via planning [1, 2] or other methods [3–5]. The accuracy of the learned dynamics models is
the key to the success of MBRL: small inaccuracies get compounded during lookahead search and can
therefore lead the policy to completely untrained states during deployment. For higher-dimensional
state spaces, even if it is possible to learn an accurate dynamics model, simply increasing model
capacity can lead to poor sample efficiency and may need impractical amounts of data for training.

For model accuracy, most current methods learn dense dynamics models which do not generalize
well to unexplored parts of the state space [6, 7]. To be specific, when predicting the next step
value of each state variable, dense dynamics models take the current values of all state variables and
action dimensions as input. Learning with this unnecessary large input space makes the dynamics
model vulnerable to spurious correlations between unrelated features. In contrast, in many real world
problems, the dynamics is sparse, meaning that the next step value of each state variable only depends
on a small subset of state variables. Therefore, we propose to incorporate such sparsity into the
dynamics model where only the relevant state variables are used to model the transition function. With
sparsity as the inductive bias, the model can generalize well when seeing out-of(-training)-distribution
samples for irrelevant features. In this paper, we loosely call a model with such sparse dependence on
necessary features as a causal model (see a more formal definition in [8]).

One way to address sample efficiency is to learn with state abstraction. State abstraction maps
multiple states into a single abstract state, and thus simplifies the policy learning to a smaller state
space [9]. However, existing state abstraction approaches, like bisimulation [10–12], depend on the
reward function, and thus the application of the learned abstraction is constrained to a limited range
of tasks (see details in Sec. A.4). In this paper, we aim at finding a state abstraction that is applicable
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to many tasks. Our inspiration is that, based on the agent’s ability to influence the environment
via its actions, we can split state variables into three types: (1) controllable state variables that can
be affected by some action directly or indirectly; (2) action-relevant state variables that cannot be
affected by any action (even though they might change on their own) but can influence the action’s
effects on controllable state variables; and (3) action-irrelevant state variables that are neither affected
by any action nor will affect any action’s consequences. Then for the robot to finish most tasks, it
just needs to consider: (1) what are the effects of its action on controllable state variables; and (2)
how action-relevant state variables will influence its action results. Therefore, the robot can solve the
task with a state abstraction that omits action-irrelevant state variables. Compared to most existing
state abstraction approaches which only apply to one single task (where we think of a task as being
defined by its reward function), the proposed state abstraction can support learning of any task with a
reward dependent only on controllable and action-relevant state variables.

Moreover, causal (sparse) dynamics models provide a way to derive the proposed state abstraction, as
they directly represent and learn whether each state variable depends on other state variables and the
action. To combine the advantages of both methods (better model accuracy and sample-efficiency),
we propose a new state abstraction framework called Task-Independent Causal State Abstraction
(TICSA) that (1) learns a causal dynamics model among all state variables, (2) divides state variables
into three types with the learned causal model, and (3) derives a state abstraction and dynamics model
in the abstract space by ignoring action-irrelevant state variables.

We evaluate TICSA in a robot manipulation environment. TICSA learns an accurate dynamics model
and generalizes better to out-of(-training)-distribution states than a non-causal model. When applied
to downstream tasks, policies with the derived state abstraction learn with higher sample efficiency
and again generalize better than those that use a non-abstracted model.

2 Approach

2.1 Problem Definition

We consider a Markov Process with a dS-dimensional S state space, a dA-dimensional A action
space, and P as the transition probability (we will slightly abuse P for other transitions in the rest of
the paper). There are dS state variables, one for each dimension of the state, denoted as s1:dS .

We begin with a formal definition of controllable, action-relevant, and action-irrelevant state variables.
Given the causal graphical model ([13], see appendix Sec. A.2 for details) of a Markov Process with
V = {s1:dSt , at, s

1:dS
t+1 } as nodes and E as edges describing causal relationships from s1:dSt /at to

s1:dSt+1 , ancestors of a state variable si are defined as all nodes that have a directed path leading to node
si (not necessarily from the immediate previous time step but can be from any previous step). For
example, for the causal dynamics model show in Fig. 1 (a), s4 is an ancestor of s2 as there is a path
of s4t → s3t+1 → s2t+2. Decedents of nodes are defined in the same way but in the opposite direction.
Then we have:

Definition (Controllable State Variables sC , Action-Relevant State Variables sR, and Action-
Irrelevant State Variables SI) sC are state variables that are the decedents of the action at; sR
are those that are ancestors of controllable state variables, excluding those already belonging to sC ;
and SI are those that belong to neither sC nor sR, where C,R, and I are the set of state dimension
indices for controllable, action-relevant, and action-irrelevant state variables respectively.

Given these definitions, the type of each state variable in the example causal dynamics model is
shown in Fig. 1 (b). Further in (c), one may notice that the causal graph can be split into three
parts, allowing us to rewrite the transition probabilities as P(st+1|st, at) = P(sCt+1|sCt , sRt , at) ·
P(sRt+1|sRt ) ·P(sIt+1|sRt , sIt ). Then TICSA forms the state abstraction φ by omitting action-irrelevant
state variables, i.e., φ(st) = (sCt , s

R
t ), and the dynamics in the abstract space can be expressed

by removing the subgraph involving action-irrelevant state variables as follows, and it is still a
causal dynamics model: P(φ(st+1)|φ(st), at) = P(sCt+1|sCt , sRt , at) · P(sRt+1|sRt ). With this state
abstraction φ, TICSA can be used to solve any actively-accomplishable downstream task (see detailed
discussion for tasks that TICSA can solve in Appendix Sec. B.1).

So far, we have defined three types of state variables and TICSA for a known causal dynamics model.
However, for real world problem, such a model is usually not accessible. Instead, agents are provided
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Figure 1: (a) an example causal dynamics model. (b) state variables can be split into three types: controllable
(green), action-relevant (orange), and action-irrelevant (blue). The dashed arrow of s4t → s5t+1 represents that
whether this edge exists or not does not affect that s5 is an action-irrelevant state variable. (c) the causal graph
can be split into three subgraphs, one for each type of state variable. (d) simulated environments. (e) the learned
causal graph in the object level accurately recovers the relationship between the state variables and the action.

with S,A, but can only collect transition data via its interactions with the environment. Hence, this
paper introduces a novel method that: (1) learns a causal dynamics model Fθ : S × A → S, (2)
derives the state abstraction φ : S → SC × SR and dynamics Fφθ in the abstract space, (3) learns a
reward predictor for any actively-accomplishable task in the abstract space Rϕ : φ(S) × A → R,
and (4) uses planning methods to solve the task with learned Fφθ and Rϕ.

2.2 Causal Dynamics

To learn a causal dynamics model Fθ from the agent’s experience, we adapt a differentiable causal
inference method [14]. The parameter θ includes (1) dS neural networks f1:dSθ , one for each state
variable, to model the conditional probability P(sit+1|PAsi), where PAsi are parents of si in the
learned causal graph, (2) a binary adjacency matrix M ∈ {0, 1}dS×dS and a binary intervention mask
I ∈ {0, 1}dS×dA which select neural network inputs from all state variables and action dimensions.
Here M and I model the causal graph, denoted as Gθ, of the causal dynamics model. Specifically, if
matrix elementMij (or Iij) = 1, it means there is an edge from state variables sj or action dimension
aj to state variable si, i.e., sj (or aj) is one for the parents for si. From the learned causal graph Gθ,
one can derive which state variables are controllable, action-relevant, and action-irrelevant according
to their definitions. Overall, the dynamics is modeled as:

Fθ(st+1|st, at) =

dS∏
i=1

f iθ(s
i
t+1|Mi � st, Ii � at), (1)

where � denotes element-wise multiplication. The neural network f iθ outputs the probabilistic
distribution of sit+1 which in principle could be any distribution. We experiment with a Gaussian
distribution whose mean and variance are computed by the network as two separate heads. Entries
in the adjacency matrix Mij and intervention mask Iij are modeled as samples from independent
Bernoulli distributions with success probability pij .

During the training of θ, to align with the sparsity in real world dynamics, our method encourages
each state variable to depend on other nodes only if it is necessary (i.e., have as few parents as
possible). To this end, TICSA trains θ by maximizing the following regularized H-step log-likelihood:

θ∗ = arg max
θ

E
D

logFθ(st+1:t+H |st, at:t+H−1)− λM‖M‖1 − λI‖I‖1, (2)

where D is transition data collected so far (see Appendix Sec. B.2 for data collection details), λM
and λI are regularization coefficients, and gradients through binary M and I are estimated using the
Gumbel estimator [15].

After training, TICSA derives the learned state abstraction φ(s) = (s̃C , s̃R) from the learned causal
graph Gθ = (M, I), according to Definition above (we denote x̃ as a learned prediction for the
ground truth x). The dynamics in the abstract space Fφθ can also be derived by omitting the prediction
networks for action-irrelevant state variables, i.e., {f iθ}i∈I .
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Table 1: Left: Prediction Accuracy for States (log-likelihood), Right: Episodic Cumulative Reward on Tasks.

Dynamics Learning Task Learning
# of OOD Markers Causal (Ours) Non-Causal TICSA (Ours) No-Abstraction Vanilla

0 10.7 ± 1.2 11.0 ± 0.9 Reach 168.4 ± 60.7 2.1 ± 5.8 1.7 ± 4.7
1 9.9 ± 1.3 8.2 ± 2.2 Grasp 47.9 ± 39.5 34.8 ± 30.4 57.7 ± 69.1
2 10.1 ± 1.6 5.1 ± 4.4 Reach (OOD) 170.9 ± 55.9 0.9 ± 2.5 0.9 ± 2.0
3 10.2 ± 1.1 1.3 ± 6.9 Grasp (OOD) 41.3 ± 28.1 10.1 ± 12.1 0.17 ± 0.44

2.3 Policy Learning for Downstream Tasks

When solving for each actively-accomplishable downstream task, TICSA simultaneously (1) learns a
reward predictor with the abstract state, action, and an optional goal as input, Rϕ : φ(S)×A → R,
and (2) uses a planning algorithm with the learned dynamics and reward predictor for action selection.
As the reward predictor is learned in an abstract space rather than the full state space, it is more sample-
efficient and less vulnerable to spurious correlations brought about by the excessive information
(i.e., action-irrelevant state variables). Meanwhile, planning in the abstract space also reduces the
computation cost by relieving the need to roll out action-irrelevant state variables.

The reward predictor is modeled as a neural network and trained by minimizing the prediction error,
ϕ∗ = arg minϕ E(st,at,rt)∼B L(Rϕ(φ(st), at), rt), where B is the task data collected so far, and
L can take any loss function (we experiment with the absolute value of the prediction error). For
planning, we use the cross entropy method (CEM [16]), a population-based optimization algorithm, to
search for the best action with the learned dynamics and reward predictor, in the same way as [7] (see
detailed setup is in Appendix Sec. B.3).

3 Experiments

We evaluate whether TICSA can learn an accurate causal dynamics model and state abstraction.
Furthermore, compared to learning with the full state space, we hypothesize that learning with TICSA
achieves better sample efficiency and generalization. (more details in Appendix Sec. C)

Setup We design a table-top manipulation environment shown in Fig. 1 (d), with three objects that
the robot can interact with: a movable red cube that the robot can manipulate (denoted as mov), an
unmovable green cube that is fixed on the table (unm), and a randomly moving blue cube that also
cannot be manipulated (rand). There are also three non-interactable markers (mkr1, mkr2, and
mkr3) on the table, as distractors to introduce potential spurious correlations. The action controls
robot’s end-effector (eef ) and gripper (grp). Two tasks are reaching whose goal is to move the
robot’s eef to a desired location and grasping task whose goal is to grasp the movable object.

Baselines For dynamics learning, we compare the generalizability of the learned causal dynamics
model to a non-causal dynamics model. The non-causal model has the same architecture and training
process as the causal model, except that its prediction for each state variable f iθ takes all state
variables and action dimensions as input. To generate out-of-distribution (OOD) states, we change
the initialization ranges of non-interactable markers from on the table to on the ground. We also vary
the number of OOD markers.

For downstream task learning, we compare against: No-Abstraction which learns the task with the
learned causal dynamics model, but does not use the derived state abstraction for reward prediction
(uses all state variables instead). Vanilla: like standard MBRL, learning the task with non-causal
dynamics model and a reward predictor depending on all state variables.

Results For dynamics learning, the learned causal graph is shown in Fig. 1 (e). On the object level,
TICSA learns an accurate causal relationship between the state variables and the action. For dynamics
OOD generalizability (Table. 1 Left), compared to the non-causal dynamics model whose prediction
performance degrades severely as more markers are at unseen positions, the causal model maintains
the same prediction accuracies.

For task learning (Table. 1 Right), in the reaching task with relatively sparse rewards, learning
with TICSA achieves the best performance, as training the reward predictor in a smaller state space
improves sample efficiency. For policy generalizability, learning with TICSA maintains similar
performances, while performances of No-Abstraction and Vanilla drop significantly.
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Appendix A Backgrounds and Related Work

A.1 Markov Process

We consider the agent’s interaction with the environment as a Markov Process defined as M =
(S,A,P), where S ⊆ RdS is the dS-dimensional state space, A ⊆ RdA is the dA-dimensional
action space, P is the transition probability (we will slightly abuse P for other transitions in the
rest of the paper). The state space consists of dS state variables, one for each dimension of the
state space, denoted as {Si}dSi=1. In this paper, we assume that the transition over each state variable
P(sit+1|st, at) is independent. Formally, for states st, st+1 ∈ S, and action at ∈ A, we can express
the state transition probability as

P(st+1|st, at) =
∏
i

P(sit+1|st, at). (3)

A.2 Causal Graphical Models (CGM)

In the most general form, a causal graphical model [13] is defined by a distribution PX over d random
variables X1, . . . , Xd and a Directed Acyclic Graph G = (V,E). Each node i ∈ V = {1, . . . , d}
is associated with a random variable Xi and each edge (i→ j) ∈ E represents that Xi is a direct
cause of Xj , i.e., Xj depends on Xi during the data generation process (note it is different from
conditional dependence calculated from observed data). Then the distribution can be specified as

PX(x1, . . . , xd) =

d∏
i=1

PXi(xi|PAi), (4)

where PAi is the set of parents of the node i in the graph G.

For simplicity, in the remainder of the paper, we denote v1:n (or v1:n) for an abbreviation of a set of
variables {vi}ni=1 (or {vi}ni=1).

When formalizing a Markov process as CGM, the random variables are state variables at the current
time step s1:dSt , current action at, and state variables at the next time step s1:dSt+1 . We further assume
all edges in the graph G are directed from sit/at to sjt+1, i.e., there are no simultaneous or backward
causal relationships. Then Eq. (3) can be rewriten as

P(st+1|st, at) =

dS∏
i=1

P(sit+1|PAsi). (5)

Compared to Eq. (3) where sit+1 depends on all current state variables (st = s1:dSt ) and action, in this
re-formalization, sit+1 only depends on a subset of those variables. This sparse dependence matches
the sparsity exhibited in the dynamics of many real world problems and provides an inductive bias
for our dynamics model learning.

A.3 Model-based Reinforcement Learning

Model-based RL typically involves learning a dynamics model of the environment (including a reward
predictor) by maximizing the likelihood of collected trajectories, then the dynamics model and reward
predictor are used for planning [17, 2, 18], providing synthetic data [19, 20], or improving Q-value
estimates [21, 22]. However, most existing approaches model dynamics in a dense form of Eq. (3),
where each next state variable depends on all current state variables and action. This non-causal
formalization suffers from spurious correlations and generalizes poorly for out-of-distribution states.
Moreover, the reward predictor typically also has the same dense architecture, thus exacerbating the
generalization issue.

To mitigate this issue, some existing approaches learn task-relevant representations via bisimulation
metrics and show certain causal property [5, 23]. However, those methods restrict to a causal reward
predictor, while the dynamics model is still non-causal and subject to the same generalization issue.
Furthermore, their learned state representations and corresponding dynamics models can barely be
applied to other tasks (detailed in the next subsection).
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A.4 State Abstraction

Aiming at improving sample efficiency, state abstractions map equivalent states into a single abstract
state (usually by just keeping state variables relevant to the task) while preserving certain property
(e.g., the agent still can learn the optimal policy in the abstract space), thus enabling the agent to learn
on a potentially much smaller space. Bisimulation [10–12], as a popular state abstraction, aggregates
states that generate equivalent reward sequences given any action sequence. As exact equivalence is
not practical, prior work has used approximate variants like bisimulation metrics [24, 25]. Although it
may seem to be an orthogonal research direction, bisimulation is closely tied to causality, as the causal
graphical model directly models whether certain state variable is relevant to the reward. Previous
work [26] shows that state variables kept by the bisimulation abstraction consist of and only consist
of the causal ancestors of the reward variable.

Though bisimulation successfully reduces the learning space, as the abstraction is derived from the
reward function, it is often limited to a small range of tasks. Specifically, the abstraction learned from
bisimulation (metrics) can only generalize to tasks where the new reward function has a subset of the
same causal ancestors. For example, in a kitchen work space consisting of a robot, a bowl, and a cup,
the learned abstraction from robot picking up the bowl will likely generalize to learning to place the
bowl. However, as the cup is irrelevant with the bowl pick-up reward, the learned abstraction excludes
cup information and thus cannot learn to pick up the cup. To learn a state abstraction for cup related
tasks, the method needs to be trained from scratch with a task related to the cup. For real world
problems, we usually want the robot learn to finish a wide range of tasks (e.g., manipulating different
objects), and training this bisimulation abstraction for each task (object) is obviously intractable.

In the same spirit with state abstraction, works on endogenous state variables (those can be affected
by actions [27]) and exogenous ones (those cannot be affected) try to reduce state space by removing
irrelevant exogenous state variables [28, 29]. However, their methods still depend on the reward and
thus have the same issues mentioned earlier.

Instead, the proposed TICSA derives the state abstraction from the learned dynamics model only and
does not require a reward function. As a result, its abstraction can be applied to a wide range of tasks.

Appendix B Approach Details

B.1 Solvable Tasks for TICSA

TICSA can be used to solve any actively-accomplishable downstream task. Here, downstream means
the task is defined in the same environment (Markov Process) as the dynamics model is learned
so that the agent can use the state abstraction φ to solve the task via learning from the provided
rewards. Meanwhile, actively-accomplishable means that, for the reward function of the task, its
inputs only consist of controllable and action-related state variables (sC , sR). Additionally, if the task
is to let certain controllable state variables reach a varying goal gt ∈ S̄C , the goal must be provided.
Otherwise, it is impossible for the agent to predict the reward accurately without knowing where the
goal is. Notice again that actively-accomplishable tasks do not include tasks whose reward functions
also take action-irrelevant state variables as input, for example, giving the robot a +1 reward for
picking up the cup only when it rains outsides and 0 otherwise. However, as the reward function of a
task can be arbitrarily designed using any state variable, being able to solve all tasks means that no
state variables can be omitted (i.e., no state abstraction). Meanwhile, we maintain that in practice,
it is relatively uncommon for a task’s reward function to involve action-irrelevant state variables,
making TICSA fairly generally applicable in practice.

B.2 Data Collection for Dynamics Learning

The collected transitions D are important to the quality of the learned causal dynamics [30]. Hence, a
desired data collection policy should explore the state-action space as much as possibles to expose
and examine all potential dependence (between state variables and the action, and between state
variables themselves). In this work, we use a scripted policy to collect data and leave learning a
policy for future work.
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B.3 Planning Algorithm

For planning, we use the cross entropy method (CEM [16]), a population-based optimization algorithm,
to search for the best action with the learned dynamics and reward predictor, in the same way as
[7]. For each time step t, CEM initializes a time-dependent diagonal Gaussian belief over optimal
action sequence at:t+L ∼ N (µt:t+L, σ

2
t:t+L) where L is the planning length. Starting from zero

mean and unit variance, it repeatedly samples J candidate action sequences, evaluates them based on
cumulative rewards, and updates µt:t+L, σ2

t:t+L) to the mean and variance of the top K candidates.
After N iterations, the planner returns µt as the current optimal action.

Appendix C Experiments Details

C.1 Environment

We design a table-top manipulation environment shown in Fig. 1 (d) using the robosuite simulation
framework [31]. At each episode, the objects and markers are reset to randomly sampled poses on
the table. The experiment is conducted on a UR5e robot arm with a Rethink gripper. The state space
is 32-dimensional, consisting of robot end-effector (EEF) location (R3), gripper (grp) joint angles
(R2), poses of the three objects (3× SE(3)), and locations of the three markers (3×R3). The action
space is 4-dimensional, consisting of EEF location displacement (R3) and the degree to which the
gripper is opened ([0, 1]). Given this setup, as ground truth, the controllable state variables are the
robot EEF location, the gripper joint angles, and the movable object pose; the action-relevant state
variables are the poses of the unmovable and the randomly moving objects as they may block arm
motion; the action-irrelevant state variables are locations of the markers as they are non-interactable.

C.2 Implementation

Causal Dynamics Model For the prediction network of each state variable f iθ(s
i
t+1), we use a

3-layer (64, 32, and 32 units) fully connected network with Leaky ReLU activations. For transition
data collection, a scripted policy with mixed behaviors (10% random motion, 50% pushing, and
40% picking) is used. During training, a prediction horizon of H = 5 is used, and λM is gradually
increased from 0.01 to 0.15 and λI from 0.01 to 0.2 in the first 500K steps. The model is trained for
900K steps, where, at each step, one transition is collected and the model has one gradient update
using the data collected so far.

Causal State Abstraction After the training of the causal dynamics model, the learned adjacency
matrixM and intervention mask I are used to construct the causal graph Gθ. For the learned Bernoulli
success probability pij of each entry in M and I , we use a threshold of 0.5 to determine if an edge
exists or not. Then the state abstraction and the dynamics in the abstract space are derived according
to Definitions 1-3 given Gθ.

Reward Predictor and Planning The reward predictorRϕ is modeled as a fully connected network
with ReLU activations. The number and sizes of layers depend on the task, so they will be introduced
later. For CEM planning, for all tasks, we use planning length L = 10, J = 128 candidates, K = 32
top candidates, and N = 10 iterations.

C.3 Causal Dynamics

We begin by testing if TICSA can learn an accurate causal dynamics model qualitatively by examining
the learned causal graph and quantitatively by evaluating its generalizability with respect to out-of-
distribution states.

The learned causal graph is shown in Fig. ?? (Right), where we approximate it to the object level as
it is hard to display the full M and I whose size is 32× 36 in total1. At object level, TICSA learns an
accurate causal relationship between the state variables and the action and correctly divides the state
variables in the same way as described in Sec. C.1. Specifically, it learns that its actions can control
EEF, the gripper, and the movable object. Meanwhile, unmovable and randomly moving objects

1The full M and I can be found in this video.
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can influence the EEF by blocking its motions. Finally, markers are not interactable so each of them
depends on nothing and influences nothing but itself. However, at the state variable level, the learned
relationships are not perfectly accurate (see details in the associated video mentioned before).

To test the generalizability of the learned causal dynamics model, we compare it to a non-causal
dynamics model. The non-causal model has the same architecture and training process as the
causal model, except that its prediction for each state variable f iθ takes all state variables and action
dimensions as input. To generate out-of-distribution data, we change the initialization ranges of
non-interactable markers from on the table to on the ground. We also vary the number of markers.
Then the same scripted policy introduced in Sec. C.2 is used to collect 10K transition data points to
evaluate each model. Each model makes a 5-step prediction for all other state variables except for
the out-of-distribution marker. The performances are measured by the mean and standard deviation
of the log-likelihood and are listed in Table. 1 Left. Compared to the causal dynamics model, the
non-causal model has more model capacity to overfit the training data, and thus it achieves slightly
better prediction when no markers are changed. However, as more and more markers are in different
positions than during training, its prediction performance degrades severely, whereas the causal model
maintains the same prediction accuracies. This result validates that the causal dynamics model has
better out-of-distribution generalization due to its inductive bias of sparsity.

C.4 Downstream Tasks

To validate that the state abstraction from TICSA can be applied to learning various downstream tasks
in a sample-efficient and generalizable manner, we evaluate it on two tasks (reaching and grasping)
and compare its performance against two baselines.

For the reaching task, the goal is to move the robot’s EEF to a desired location geef
t that is randomly sam-

pled for each episode, and its reward function is formulated as rreach
t = 1−tanh

(
10 · ‖xeef

t − geef
t ‖1

)
,

where xeef
t is the current EEF location. Notice that, though the reward is non-zero everywhere, it is

actually pretty sparse (< 0.005 if the L1 distance is greater than 0.3 m). For this task, the reward
predictor uses a 2-layer fully connected network with 64 units each layer.

The goal of the grasping task is to grasp the movable object, and it is defined by the following
2-component reward rgrasp

t = 0.5 ·
(
1− tanh

(
5 · ‖xeef

t − xmov
t ‖1

))
+ 1(success), where xmov

t is the
current location of the movable object, and 1(success) is the indicator function judging whether the
grasp is successful. The first component of the reward provides a denser reward (compared to the
reaching task) to guide the EEF to explore the area. The reward predictor for this task uses a 3-layer
fully connected network with 128 units each layer.

As random exploration is unlikely to finish the tasks and generate learning signals for the reward
predictor, for each episode, there is 10% chance to use the same scripted policy as in Sec. C.2 to
provide demonstrations for the agent.

For a fair comparison, we use the same architecture and training process for all methods. During
training, the dynamics model is frozen and only the reward predictor is updated.

After training each method for 90K steps in the reaching task and 300K steps in the grasping task, we
evaluate the trained policies using 50 runs for each task, and their performances (measured by the
mean and standard deviation of the cumulative reward in the episode) are shown in Table. 1 Right
top two rows. For the reaching task with relatively sparse rewards, learning with TICSA achieves
the best performance, as training the reward predictor in a smaller state space reduces complexity
and improves sample efficiency. However, for the grasping task, as it has a dense reward to guide
exploration, all methods learn to finish it, and Vanilla has the highest cumulative rewards with its
largest model capacity.

To test the generalizability of our method, we again change the initialization ranges of all 3 markers in
the same way as in Sec. C.3 and test each method on 50 runs. The performances are shown in Table.
1 Right in the bottom two rows. For both tasks, learning with TICSA maintains similar performances
as the state abstraction omits markers that are irrelevant to the manipulation dynamics and rewards. In
contrast, performances of No-Abstraction and Vanilla drop significantly. Especially for the grasping
task, the performance of No-Abstraction drops 71% even though it uses a causal dynamics model,
and Vanilla degrades even more (> 99%).
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