
Lifelong Robotic Reinforcement Learning
by Retaining Experiences

Annie Xie and Chelsea Finn
Department of Computer Science

Stanford University
anniexie@stanford.edu

Abstract

Multi-task learning ideally allows robots to acquire a diverse repertoire of useful
skills. However, many multi-task reinforcement learning efforts assume the robot
can collect data from all tasks at all times. In reality, the tasks that the robot learns
arrive sequentially, depending on the user and the robot’s current environment. In
this work, we study a practical sequential multi-task RL problem that is motivated
by the practical constraints of physical robotic systems, and derive an approach that
effectively leverages the data and policies learned for previous tasks to cumulatively
grow the robot’s skill-set. In a series of simulated robotic manipulation experiments,
our approach requires less than half the samples than learning each task from
scratch, while avoiding impractical round-robin data collection. On a Franka
Emika Panda robot arm, our approach incrementally learns ten challenging tasks,
including bottle capping and block insertion.

Figure 1: A Franka Emika robot arm learns a sequence of manipulation tasks, including block insertion and
bottle capping, by retaining experience from previous tasks.

1 Introduction
General-purpose robots should be capable of learning and performing a multitude of tasks in their,
ideally never-ending, lifetimes. Multi-task learning paves a promising path towards such robots
by capitalizing on the potential shared structure between tasks to facilitate more efficient learning
of each task. While multi-task learning has proven successful in a number of domains, including
control tasks in simulated environments [33, 30, 41, 14, 31, 48], there has been a considerably smaller
effort in applying these algorithms to real robotic systems [19]. A key but limiting assumption of
the multi-task paradigm is that the agent can collect data from each task in round-robin fashion,
which can be highly impractical in many robotic learning setups. Imagine asking a robot to learn
two tasks with vastly different setups: bottle capping, which requires fixing a bottle on a table, and
block sorting, which requires a sorting cube (see Fig. 1). Round-robin data collection for the two
tasks would demand significant human assistance, that is, to repeatedly swap the physical setup of
the robot’s learning environment or to engineer a single environment suitable for learning all tasks.

Beyond the impracticality of the framework, it also offers limited flexibility in the way tasks are
assigned. A robot may encounter new tasks that it needs to learn over the course of its lifetime,

NeurIPS 2021 Workshop on Robot Learning: Self-Supervised and Lifelong Learning, Virtual, Virtual

Figure 2: In our framework, we perform two steps during each new task. First, we pre-train on the experience
from earlier tasks (left). To align the data to the same objective, we use the underlying reward function of the
upcoming task to relabel this experience before pre-training. Second, we learn online in the robot’s physical
environment and gather new data to continuously improve the robot’s policy until the task is solved (right).

which the current multi-task learning setup fails to address. Instead, solving tasks one after another
tremendously reduces the amount of physical modifications to the environment that is required to
switch between tasks, and naturally permits human users to dynamically assign new tasks to the robot.
This paradigm can thus bring us a step closer to lifelong-learning robots that can continuously accrue
a diverse skill-set and learn new tasks more quickly.

Many lifelong learning algorithms limit the amount of data that can be stored over the sequence of
tasks and focus on the problem of catastrophic forgetting of old tasks [20]. However, an equally
critical aspect of lifelong learning is addressing how to leverage prior experience to accelerate learning
of future tasks. Moreover, in most robot learning settings with modern compute and hard drives, it is
practical to accumulate a significant amount of data and indeed modern machine learning systems
have been most successful when trained on broad datasets that are much larger than those typically
used for training robots [23]. Therefore, we develop a simple but powerful technique for selectively
transferring relevant experiences and implement it in a sequential robotic task learning system.

The core contribution of this paper is a framework for efficient lifelong reinforcement learning that
is suitable for physical robots. In particular, the robot performs two distinct stages at the arrival of
each new task: (1) it pre-trains a policy on the prior experience stored in its replay buffer, and (2)
it collects data in the new task and improves its policy with online data and the relevant prior data.
We demonstrate the efficacy of our approach on a Franka arm, which incrementally learns to solve a
sequence of ten challenging tasks with differing objectives and physical setups (illustrated in Fig. 1).

2 Lifelong Reinforcement Learning via Experience Transfer

We are interested in solving a sequence of tasks T 1, T 2, . . . , T N . Formally, each task T i is defined
by a MDP, with state space S, action space A, transition dynamics pi(s′|s,a), and reward function
ri(s,a). We also assume the agent can access the full reward function for each task ri : S ×A → R,
which is often specified by the user, either directly provided as a closed-form function of states and
actions, or indirectly as demonstrations of the task or examples of successful states.

Our algorithm, depicted in Fig. 2 and summarized in Alg. 1, begins by learning the first task from
scratch with vanilla Soft Actor-Critic [13]. For each following new task, we restore the replay
buffer(s) from the previous task(s) and pre-train on this data (Sec. 2.1), and subsequently improve the
agent’s policy on the task with online experience (Sec. 2.2). Both of these stages reuse the previously
collected, offline data in order to maximize the sample efficiency of our algorithm.

2.1 Pre-Training on Prior Experience

At the arrival of a new task T i, we restore the replay buffers D1:i−1 from the previous tasks, and
optionally, the weights from the most recent task. Then, with the reward function ri for task T i, we
can relabel the rewards of the aggregated dataset, making them consistent with task T i

Dsrc :=

i−1⋃
j=1

{(s,a, s′, ri(s,a)) | (s,a, s′, r) ∈ Dj}. (1)

2

Algorithm 1 Lifelong RL

1: D1, θ1, φ1 ← SAC(T 1)
2: for i = 2, . . . , N do
3: Dsrc, θi, φi ← PRETRAIN(D1:i−1, ri)
4: Di, θi, φi ← IMPROVE(Dsrc, θi, φi)

Algorithm 2 PRETRAIN

1: Input: Replay buffers D1,D2, . . . ,Di−1

2: Input: Reward function ri

3: Optional: Task parameters θi−1, φi−1

4: Initialize parameters θi, φi

5: Aggregate and relabel buffers (Eqn. 1)
6: for each iteration do
7: Sample batch from Dsrc

8: Soft actor-critic updates:
9: � θi ← θi − α∇θiLQ

10: � φi ← φi − α∇φiLπ
11: Return: Dsrc, θi, φi

Algorithm 3 IMPROVE

1: Input: Relabeled source buffer Dsrc

2: Input: Pre-trained parameters θi, φi

3: Initialize replay buffer Di
4: Initialize classifiers ψ, ω
5: for each iteration do
6: for each environment step do
7: Sample action a ∼ πθ(a|s)
8: Step in environment s′ ∼ pi(s′|s,a)
9: Update buffer Di ← Di ∪ {(s,a, s′, r)}

10: for each update step do
11: Sample batch from Dsrc ∪ Di
12: � θi ← θi − α∇θiLQ
13: � φi ← φi − α∇φiLπ
14: Classifier updates:
15: � ψ ← ψ − α∇ψLψ
16: � ω ← ω − α∇ωLω
17: Filter source buffer Dsrc (Eqn. 2)
18: Return: Di, θi, φi

We then sample batches of this modified datasetDsrc with which we apply offline updates to the policy
and critic as a form of pre-training. Despite the potential discrepancies in the dynamics between
tasks, we expect the pre-trained parameters to produce better trajectories than a random policy, and
thus accelerate learning in the new task. The pre-training subroutine is summarized in Alg. 2.

2.2 Improving with Online Experience

To improve the pre-trained policy from Sec. 2.1, our algorithm next collects online interactions in
the robot’s physical learning environment for task T i. Since our goal is to minimize the amount
of online experience the robot needs to collect in its environment, we aim to also use the relabeled
experience Dsrc during this online phase. However, because of the differing dynamics between tasks,
these samples may vary in utility for accomplishing the current task, depending on the dynamics gap.

Likelihood-free importance weights. Let Di represent the samples from the target task i and
Dsrc samples from all previous tasks. Our algorithm trains a separate policy for each new task,
leading to unequal state-action distributions ptgt(s,a) 6= psrc(s,a). Hence, we define the importance
weights as w(s,a, s′) = ptgt(s,a, s′)/psrc(s,a, s′), which we can also express as w(s,a, s′) =
p(target|s,a,s′)
p(source|s,a,s′) ·

p(source)
p(target) . We can estimate the first term with a classifier cψ(s,a, s′) that outputs the

probability that a (s,a, s′) tuple is from the target task, trained with the cross-entropy loss:
Lψ = −E(s,a,s′)∼Di [log cψ(s,a, s

′)]− E(s,a,s′)∼Dsrc [log(1− cψ(s,a, s′))] .
The second term can be estimated with the ratio of the replay buffers’ size, |Dsrc|/|Di|. Intuitively,
the Dsrc samples should weigh less as we collect more samples in the target task.

Which samples should we transfer? One way to use these weights is to re-weigh the examples in
the RL objective. However, the weights can be numerically unstable and may require clipping to lie in
a more reasonable range. We instead filter out samples that are unlikely in the target task, according
to the classifier cψ. Concretely, we apply a threshold to the first term of the importance weight:

w̃(s,a, s′) = 1
(

cψ(s,a,s
′)

1−cψ(s,a,s′) ≥ γ
)

, where γ controls how conservatively samples are transferred.

Exploration via a state classifier. Finally, prior experience on related tasks may be informative
for what states to explore in future tasks. For example, a robot solving a sequence of table-top
manipulation tasks generally needs to move the arm towards objects. We build this heuristic into the
filtering scheme through the ratio psrc(s)/ptgt(s). In practice, we introduce a second classifier on the
state cω(s), and transfer samples for which cω(s)

1−cω(s) < ζ. Our overall filtering rule is:

Dsrc ← {(s,a, s′, r) | (s,a, s′, r) ∈ Dsrc,
cω(s)

1− cω(s)
< ζ or

cψ(s,a, s
′)

1− cψ(s,a, s′)
≥ γ} (2)

The complete online improvement phase is outlined in Alg. 3.

3

Task 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Overall

Scratch [13] (50k) 1.00 0.76 0.78 0.36 0.60 0.43 0.93 0.72 0.69 0.88 0.43 0.72 0.59 0.34 0.64 0.71 0.64± 0.04
Scratch [13] (100k) 1.00 0.75 0.53 0.84 0.57 0.54 1.00 0.66 0.76 1.00 0.52 0.80 0.96 0.46 0.96 0.59 0.73± 0.04

Prog. Nets [34] – 0.57 0.74 0.50 0.38 0.21 0.69 0.24 0.26 0.43 0.53 0.34 0.71 0.03 0.69 0.36 0.45± 0.05
Fine-tuning [16] – 0.83 0.79 0.44 0.54 0.42 0.66 0.53 0.74 0.36 0.51 0.49 0.74 0.23 0.96 0.17 0.56± 0.06

DARC [7] – 0.33 0.67 0.33 0.50 0.21 0.40 0.54 0.33 0.63 0.83 0.56 0.62 0.17 0.97 0.62 0.52± 0.06
DARC [7] (pre-train) – 0.48 0.67 0.49 0.43 0.28 0.87 0.39 0.49 0.52 0.79 0.76 0.63 0.23 0.87 0.44 0.56± 0.05
Standard IW – 0.48 0.70 0.69 0.41 0.63 0.34 0.68 0.23 0.30 0.51 0.74 0.91 0.32 0.79 0.87 0.57± 0.05

Ours – 1.00 0.80 0.91 0.53 0.59 0.98 0.97 0.63 1.00 0.73 0.83 0.88 0.37 0.87 0.76 0.79± 0.04
Ours (warm-start) – 0.90 0.82 0.77 0.50 0.66 0.70 0.49 0.76 0.94 0.54 0.86 0.91 0.24 0.99 0.77 0.72± 0.05
Ours (w/o state cls) – 0.52 0.78 0.57 0.57 0.52 0.91 0.90 0.88 0.66 0.66 0.58 0.97 0.38 0.82 0.79 0.70± 0.05

Table 1: Task success for 16 tasks averaged across 3 different task sequences. For the first task, we run the SAC
algorithm for 100K time-steps. For the remaining tasks, we run each method for 50K time-steps and report the
average final task performance. Our approach is significantly more successful than fine-tuning and learning from
scratch. Further, our approach is more successful than training from scratch using 100K time-steps.

3 Experiments
We carefully study our method as well as several comparisons in a simulated robot environment.
In particular, we compare to two methods that leverage prior weights, Progressive Nets [34] and
Fine-tuning [16]. We also compare to methods that reuse prior data, DARC [7]; DARC [7] (pre-
train), DARC augmented with our pre-training procedure described in Sec. 2.1; and Standard IW,
vanilla off-policy RL that reweighs samples with wOP = πi(a|s)/πi−1(a|s). We also study three
variants of our algorithm: Ours, Ours (warm-start), and Ours (w/o state cls). The second restores
the trained weights of the policy and critic from the previous task prior to the pre-training phase, and
the third removes the filtering criterion based on the state classifier from Ours. The videos for the
robot experiments are on our project webpage: https://sites.google.com/view/retain-experience/.

3.1 Evaluating Forward Transfer

We first construct a family of key-insertion tasks within Robosuite [51], using the MuJoCo physics
engine [43]. The objective of each task is to insert the key into a box, while different tasks have
varying placements of the box, key sizes, and initial orientations of the key with respect to the box. A
full description of the environment is provided in App. D, and hyperparameter details are reported
in App. C. In Table 1, we summarize the results of all methods on the 3 task sequences in terms of
the task success. After only 50K time-steps on each task, Ours is on average more successful than
all other methods, even when each task is learned from scratch with twice the number of time-steps.
Ours (warm-start), which additionally restores the weights from the previous task, performs slightly
worse than the data-only variant, likely due to the diversity of the tasks. The worse performance of
Ours (w/o state cls) highlights the importance of also filtering based on the state classifier.

Notably, the performance of Progressive Nets [34] is worse than that of naive fine-tuning. The
lack of improvement can likely be explained by the low-dimensional states in the tasks, which
makes representation transfer less critical and perhaps less useful than data or weight transfer. The
comparison of DARC to DARC (pre-train) confirms the benefit of using our pre-training phase, and
the lower success rate of DARC (pre-train) compared to our method suggests that the importance
weights we define are much better suited for the sequential nature of the lifelong learning problem.

3.2 Learning in the Real World

Figure 3: The learning
curve averaged across tasks
i > 1 on the physical robot.

Next, we evaluate our algorithm on a physical robot arm on a sequence of
10 object manipulation tasks, ranging from capping a bottle to inserting
a block (see Fig. 1 and App. D for more setup details). We focus our
evaluation on forward transfer and compare the learning efficiency of
our algorithm to learning each task from scratch. After each epoch, we
roll out the mean policy for 10 evaluation episodes, and plot the average
distance to the goal position versus the number of training environment
steps averaged across all tasks after the first one in Fig. 3. The individual
learning curves for each task are included in App. E. Overall, our algo-
rithm achieves an average distance of 0.75 centimeters to the goal within
10K environment steps of a new task compared to an average distance
of 1.83 centimeters achieved by learning from scratch in the same number of steps. In Table 4 of
App. E, we report the average final performance by task for the two methods.

4

https://sites.google.com/view/retain-experience/

References
[1] Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder,

Bob McGrew, Josh Tobin, Pieter Abbeel, and Wojciech Zaremba. Hindsight experience replay.
Neural Information Processing Systems (NeurIPS), 2017.

[2] OpenAI: Marcin Andrychowicz, Bowen Baker, Maciek Chociej, Rafal Jozefowicz, Bob Mc-
Grew, Jakub Pachocki, Arthur Petron, Matthias Plappert, Glenn Powell, Alex Ray, et al. Learning
dexterous in-hand manipulation. The International Journal of Robotics Research, 2020.

[3] Karol Arndt, Murtaza Hazara, Ali Ghadirzadeh, and Ville Kyrki. Meta reinforcement learning
for sim-to-real domain adaptation. IEEE International Conference on Robotics and Automation
(ICRA), 2020.

[4] Mahsa Baktashmotlagh, Mehrtash T Harandi, Brian C Lovell, and Mathieu Salzmann. Domain
adaptation on the statistical manifold. IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2014.

[5] Steffen Bickel, Michael Brückner, and Tobias Scheffer. Discriminative learning for differing
training and test distributions. In Proceedings of the 24th international conference on Machine
learning, pages 81–88, 2007.

[6] Coline Devin, Abhishek Gupta, Trevor Darrell, Pieter Abbeel, and Sergey Levine. Learning
modular neural network policies for multi-task and multi-robot transfer. IEEE International
Conference on Robotics and Automation (ICRA), 2017.

[7] Benjamin Eysenbach, Swapnil Asawa, Shreyas Chaudhari, Ruslan Salakhutdinov, and Sergey
Levine. Off-dynamics reinforcement learning: Training for transfer with domain classifiers.
International Conference on Learning Representations (ICLR), 2021.

[8] Fernando Fernández and Manuela Veloso. Probabilistic policy reuse in a reinforcement learning
agent. In AAMAS, pages 720–727, 2006.

[9] Chelsea Finn and Sergey Levine. Deep visual foresight for planning robot motion. In 2017
IEEE International Conference on Robotics and Automation (ICRA), pages 2786–2793. IEEE,
2017.

[10] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adapta-
tion of deep networks. In International Conference on Machine Learning, 2017.

[11] Shixiang Gu, Ethan Holly, Timothy Lillicrap, and Sergey Levine. Deep reinforcement learning
for robotic manipulation with asynchronous off-policy updates. In international conference on
robotics and automation (ICRA), 2017.

[12] Tuomas Haarnoja, Sehoon Ha, Aurick Zhou, Jie Tan, George Tucker, and Sergey Levine.
Learning to walk via deep reinforcement learning. Robotics: Science and Systems (RSS), 2018.

[13] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. International Conference
on Machine Learning (ICML), 2018.

[14] Karol Hausman, Jost Tobias Springenberg, Ziyu Wang, Nicolas Heess, and Martin Riedmiller.
Learning an embedding space for transferable robot skills. International Conference on Learning
Representations (ICLR), 2018.

[15] David Isele and Akansel Cosgun. Selective experience replay for lifelong learning. In Proceed-
ings of the AAAI Conference on Artificial Intelligence, volume 32, 2018.

[16] Ryan Julian, Benjamin Swanson, Gaurav S Sukhatme, Sergey Levine, Chelsea Finn, and Karol
Hausman. Efficient adaptation for end-to-end vision-based robotic manipulation. Conference
on Robot Learning (CoRL), 2020.

[17] Leslie Pack Kaelbling. Learning to achieve goals. IJCAI, 1993.
[18] Dmitry Kalashnikov, Alex Irpan, Peter Pastor, Julian Ibarz, Alexander Herzog, Eric Jang,

Deirdre Quillen, Ethan Holly, Mrinal Kalakrishnan, Vincent Vanhoucke, et al. Qt-opt: Scalable
deep reinforcement learning for vision-based robotic manipulation. Conference on Robot
Learning (CoRL), 2018.

[19] Dmitry Kalashnkov, Jake Varley, Yevgen Chebotar, Ben Swanson, Rico Jonschkowski, Chelsea
Finn, Sergey Levine, and Karol Hausman. Mt-opt: Continuous multi-task robotic reinforcement
learning at scale. arXiv, 2021.

5

[20] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins,
Andrei A Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al.
Overcoming catastrophic forgetting in neural networks. Proceedings of the national academy of
sciences, 2017.

[21] Jens Kober, J Andrew Bagnell, and Jan Peters. Reinforcement learning in robotics: A survey.
The International Journal of Robotics Research, 2013.

[22] Nate Kohl and Peter Stone. Policy gradient reinforcement learning for fast quadrupedal
locomotion. In International Conference on Robotics and Automation, 2004.

[23] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. Advances in neural information processing systems, 2012.

[24] Alessandro Lazaric. Transfer in reinforcement learning: a framework and a survey. In Rein-
forcement Learning, pages 143–173. Springer, 2012.

[25] Alessandro Lazaric, Marcello Restelli, and Andrea Bonarini. Transfer of samples in batch
reinforcement learning. In international conference on Machine learning, 2008.

[26] Joonho Lee, Jemin Hwangbo, Lorenz Wellhausen, Vladlen Koltun, and Marco Hutter. Learning
quadrupedal locomotion over challenging terrain. Science robotics, 5(47), 2020.

[27] Michelle A Lee, Yuke Zhu, Krishnan Srinivasan, Parth Shah, Silvio Savarese, Li Fei-Fei,
Animesh Garg, and Jeannette Bohg. Making sense of vision and touch: Self-supervised learning
of multimodal representations for contact-rich tasks. In International Conference on Robotics
and Automation (ICRA). IEEE, 2019.

[28] Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-end training of deep
visuomotor policies. The Journal of Machine Learning Research, 2016.

[29] Anusha Nagabandi, Ignasi Clavera, Simin Liu, Ronald S Fearing, Pieter Abbeel, Sergey Levine,
and Chelsea Finn. Learning to adapt in dynamic, real-world environments through meta-
reinforcement learning. International Conference on Learning Representations (ICLR), 2019.

[30] Emilio Parisotto, Lei Jimmy Ba, and Ruslan Salakhutdinov. Actor-mimic: Deep multitask and
transfer reinforcement learning. International Conference on Learning Representations (ICLR),
2016.

[31] Martin Riedmiller, Roland Hafner, Thomas Lampe, Michael Neunert, Jonas Degrave, Tom
Wiele, Vlad Mnih, Nicolas Heess, and Jost Tobias Springenberg. Learning by playing solving
sparse reward tasks from scratch. International Conference on Machine Learning (ICML),
2018.

[32] David Rolnick, Arun Ahuja, Jonathan Schwarz, Timothy P Lillicrap, and Greg Wayne. Ex-
perience replay for continual learning. Neural Information Processing Systems (NeurIPS),
2019.

[33] Andrei A Rusu, Sergio Gomez Colmenarejo, Caglar Gulcehre, Guillaume Desjardins, James
Kirkpatrick, Razvan Pascanu, Volodymyr Mnih, Koray Kavukcuoglu, and Raia Hadsell. Policy
distillation. International Conference on Learning Representations (ICLR), 2016.

[34] Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick,
Koray Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks. arXiv
preprint arXiv:1606.04671, 2016.

[35] Simon Schmitt, Jonathan J Hudson, Augustin Zidek, Simon Osindero, Carl Doersch, Woj-
ciech M Czarnecki, Joel Z Leibo, Heinrich Kuttler, Andrew Zisserman, and Karen Simonyan.
Kickstarting deep reinforcement learning. arXiv preprint arXiv:1803.03835, 2018.

[36] Xingyou Song, Yuxiang Yang, Krzysztof Choromanski, Ken Caluwaerts, Wenbo Gao, Chelsea
Finn, and Jie Tan. Rapidly adaptable legged robots via evolutionary meta-learning. IEEE
International Conference on Intelligent Robots and Systems (IROS), 2020.

[37] Yunzhe Tao, Sahika Genc, Tao Sun, and Sunil Mallya. Repaint: Knowledge transfer in deep
actor-critic reinforcement learning. arXiv preprint arXiv:2011.11827, 2020.

[38] Matthew E Taylor and Peter Stone. Transfer learning for reinforcement learning domains: A
survey. Journal of Machine Learning Research, 10(7), 2009.

6

[39] Matthew E Taylor, Nicholas K Jong, and Peter Stone. Transferring instances for model-based
reinforcement learning. In Joint European conference on machine learning and knowledge
discovery in databases, 2008.

[40] Russell L Tedrake. Applied optimal control for dynamically stable legged locomotion. PhD
thesis, Massachusetts Institute of Technology, 2004.

[41] Yee Whye Teh, Victor Bapst, Wojciech M Czarnecki, John Quan, James Kirkpatrick, Raia
Hadsell, Nicolas Heess, and Razvan Pascanu. Distral: Robust multitask reinforcement learning.
Neural Information Processing Systems (NeurIPS), 2017.

[42] Andrea Tirinzoni, Andrea Sessa, Matteo Pirotta, and Marcello Restelli. Importance weighted
transfer of samples in reinforcement learning. In International Conference on Machine Learning,
2018.

[43] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based
control. IEEE International Conference on Intelligent Robots and Systems (IROS), 2012.

[44] Marc Toussaint. Robot trajectory optimization using approximate inference. International
Conference on Machine Learning (ICML), 2009.

[45] Jane X Wang, Zeb Kurth-Nelson, Dhruva Tirumala, Hubert Soyer, Joel Z Leibo, Remi Munos,
Charles Blundell, Dharshan Kumaran, and Matt Botvinick. Learning to reinforcement learn.
CogSci, 2017.

[46] Ruihan Yang, Huazhe Xu, Yi Wu, and Xiaolong Wang. Multi-task reinforcement learning with
soft modularization. Neural Information Processing Systems (NeurIPS), 2020.

[47] Haiyan Yin and Sinno Pan. Knowledge transfer for deep reinforcement learning with hierarchical
experience replay. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 31,
2017.

[48] Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, and Chelsea Finn.
Gradient surgery for multi-task learning. Neural Information Processing Systems (NeurIPS),
2020.

[49] Bianca Zadrozny. Learning and evaluating classifiers under sample selection bias. International
Conference on Machine Learning (ICML), 2004.

[50] Tony Z Zhao, Anusha Nagabandi, Kate Rakelly, Chelsea Finn, and Sergey Levine. Meld: Meta-
reinforcement learning from images via latent state models. Conference on Robot Learning
(CoRL), 2020.

[51] Yuke Zhu, Josiah Wong, Ajay Mandlekar, and Roberto Martín-Martín. robosuite: A modular
simulation framework and benchmark for robot learning. In arXiv preprint arXiv:2009.12293,
2020.

[52] Brian D Ziebart, Andrew L Maas, J Andrew Bagnell, and Anind K Dey. Maximum entropy
inverse reinforcement learning. AAAI, 2008.

7

A Related Work
Reinforcement learning has allowed physical robots to autonomously learn an impressive array of
skills [21, 28], from locomotion [22, 40, 12, 26] to the manipulation of diverse objects [11, 18, 27, 2].
However, robotic RL setups are often only designed with the goal of solving an individual task in
mind. As a result, the lifetime of these learning agents begins and ends with a single task, and each
new task is to be learned from scratch. With the risks associated with physical interactions in the real
world, this is not a practical approach for a robot to learn a diverse set of skills. Therefore, in the
design of our algorithm, we emphasize data efficiency when solving a series of tasks.

In principle, if the agent leverages knowledge accrued from previously-solved tasks, then it should
learn new ones more efficiently than from scratch [38, 24, 45, 10, 29, 50, 3, 36]. In RL agents,
this knowledge can be transferred through representations [34, 6], learned models [9], network
weights [8, 33], or experiences [17, 39, 25, 1, 42, 37]. Multi-task learning also aims to transfer
knowledge across tasks but achieves this by learning the set of tasks together [30, 41, 14, 46, 48].
This framework has allowed robots to learn a range of goal-based tasks [17, 1], but may be less
practical when each task has a unique physical setup. Unlike these prior works, we study the
sequential multi-task learning problem where data can only be collected from the current task rather
than in a round-robin fashion, and study how to efficiently solve a sequence of tasks on a real robot.

A common form of sequential transfer is to reuse the weights of a policy network by fine-tuning
them to the new task [8, 16] or distilling the learned behavior [28, 33, 30, 35]. While learned
policies and value functions readily offer prior task information in a compact form, they become less
useful as the optimal policies between tasks are less similar. On the other hand, the raw experience
accumulated from earlier tasks cannot be immediately used to generate behavior—we have to expend
computational resources to optimize a policy with this data for example. Additionally, not all
experiences may be relevant to the target task, which can be addressed by prioritizing samples by
their relevance [39, 25, 42, 37, 7]. Despite these challenges, individual experience samples also
represent the most complete as well as unprocessed form of knowledge from a task, and hence can be
used in flexible ways. For example, they can be used to optimize auxiliary objectives [15], combat
catastrophic forgetting [32], and accelerate learning of new tasks [1, 47, 37]. Nonetheless, none of
these prior methods study lifelong learning of a sequence of physical robotic manipulation tasks. Our
approach combines the strengths of weight and experience transfer to improve the data efficiency of
sequential robotic task learning, and significantly outperforms prior methods in our experiments.

B Preliminaries
A task is defined by a Markov decision process with a continuous state space S and action space A.
In our robotic control problem, the state s ∈ S consists of the Cartesian end-effector position and the
action a ∈ A corresponds to motor commands in the form of end-effector displacements. The next
state s′ ∈ S is determined by (unknown) dynamics p(s′|s,a), and at each time step, the environment
returns a scalar reward r(s,a). The goal of standard RL is to acquire a policy π(a|s) that maximizes
the expected sum of rewards J (π) :=

∑T
t=1 E(st,at)∼ρπ [γ

tr(st,at)] , where ρπ is the trajectory
distribution induced by π. Next, we introduce an RL algorithm that solves the single-task setting with
off-policy experience (Sec. B.1). To reuse experience from prior tasks, we measure the relevance of
individual samples for a new task with importance weights (Sec. B.2).

B.1 Soft Actor-Critic

The soft actor-critic [13] (SAC) algorithm optimizes the maximum-entropy RL objective [52, 44],
using off-policy data for more sample-efficient learning. In particular, SAC stores a replay buffer D
of all collected transitions and rewards, i.e., (s,a, s′, r). With this data, a Q-function (or critic) Qθ
is trained to minimize the Bellman error LQ = E(s,a,s′,r)∼D

[
(Qθ(s,a)− (r + V (s′)))2

]
, where

V (s) = Ea∼π(·|s)[Qθ(s,a)− α log π(a|s)] and α is a temperature parameter. The policy (or actor)
πφ is trained to minimize the KL divergence Lπ = E(s,a)∼D [DKL (πφ(a|s)|| exp(Qθ(s,a))/Zθ(s))]
where Zθ is the partition function that normalizes the distribution on the right. In the overall algorithm,
the agent alternates between collecting data, and updating the actor and critic with this data.

B.2 Importance Weighting

Domain adaptation methods typically leverage importance weighting to correct the bias of samples
from the source domain [49, 4]. When the tasks have different dynamics but same reward, prior work

8

has defined the importance weights for each transition sample as the likelihood ratio w(s,a, s′) :=
ptgt(s′|s,a)/psrc(s′|s,a), where psrc are the transition probabilities in the source task and ptgt are
those in the target task. These weights can be estimated with learned probabilistic models [42] or
with classifiers in a likelihood-free manner [5, 7]. Eysenbach et al. [7] use the estimated weights
to relabel the rewards, i.e. r̃(s,a, s′) = r(s,a, s′) + log ŵ(s,a, s′) in their method DARC, so that
transitions that are likely under the target domain are weighed higher and vice versa.

While our method will build upon DARC, DARC on its own is ill-suited for the lifelong learning
setting for two reasons. First, this definition of the importance weight assumes that the state-action
distributions are the same in the source and target domain datasets, i.e., psrc(s,a) = ptgt(s,a). While
DARC uses the same policy in the two domains, making this approximately hold, we aim to learn a
separate policy for each new task, making psrc(s,a)/ptgt(s,a) non-neglible. Second, because their
setting places stronger limitations on the agent’s access to the target domain, training the policy on
all of the source-domain data is imperative. However, the lifelong setting allows the agent to improve
in the target domain collecting new data as necessary. Due to the inevitable estimation error in ŵ, we
find that training on all the source domain data, even if re-weighted, can be counterproductive.

C Hyperparameter Details
Policy and critic networks. For all experiments, we implement our algorithm on top of the soft
actor-critic (SAC) [13] algorithm. The policy and critic are each MLPs with 2 fully-connected layers
of size 256 and ReLU non-linearities.

Domain classifier networks. For all experiments, the domain classifier networks D1, D2 are each
MLPs with 2 fully-connected layers of size 256 and ReLU non-linearities. Following [7], we inject
Gaussian input noise with σ = 1.0 to combat overfitting at the beginning when there are few samples
from the task currently being learned.

Learning rates. For our simulated experiments, we use the Adam optimizer and learning rate of
3e−4 for the policy and critic updates, and a learning rate of 1e−3 for the domain classifiers. For our
robot experiments, we use a learning rate of 1e−3 for the policy, critic, and domain classifier updates.

Pre-training phase. For all experiments, we pre-train the policy and critic of Ours and Ours
(warm-start) with the relabeled data from the restored replay buffers for 10k iterations before online
improvement.

Online improvement phase. In the online improvement phase of Ours and Ours (warm-start), we
use threshold values ζ1 = 0.5 and ζ2 = 0.9 for all experiments. We re-filter the source dataset Dsrc

after every 1000 iterations. At the beginning of the online phase, the batches used for the policy and
critic updates are composed of 50% filtered prior data and 50% new online data. We increase this
ratio ρ of new data to prior data according to:

ρ = clip(|Di|+ 12500)/25000, 1.0)

where |Di| is the size of the replay buffer for the current task. In other words, the ratio is increased
linearly and reaches 1.0 once 25k steps have been taken in the current task.

D Environment Setup
D.1 Simulated Experiments

In our simulated experiments, we use the Robosuite [51] simulation framework which employs the
MuJoCo physics engine [43]. The robot’s state includes the robot’s joint positions and velocities, its
end-effector pose, and a binary indicator of whether the key is inside the robot’s gripper. The action
controls the deltas in the 3D-position and the z-axis rotation of the robot’s end-effector. Between
tasks, we vary the xy-position of the box gxy, the relative orientation of the key to the hole gθ, and
the length of the key l. The values of these parameters are provided for each task in Table 2. The
reward function across all tasks is:

1

3
(1(‖sxy − gxy‖2 ≤ 0.03) · 1(sz − l ≤ gz,u + 0.005)

+ (1− tanh(‖10 · (sxy − gxy‖2 + |sz − gz,l|)))
+ (1− tanh(|sθ − gθ|))),

9

Task Sequence 1 Sequence 2 Sequence 3

Rotation Position Key Type Rotation Position Key Type Rotation Position Key Type

1 0 [0, 0] Standard 0 [0, 0] Standard 0 [0, 0] Standard
2 0 [−0.045, 0.003] Horizontal −0.065 [−0.003, 0.005] Wide −0.194 [0.004,−0.026] Wide
3 0.100 [−0.032,−0.024] Horizontal −0.510 [−0.037,−0.028] Standard 0.995 [0.026, 0.024] Standard
4 −0.441 [0.029, 0.007] Standard −0.888 [0.016, 0.049] Wide 0.979 [0.026,−0.001] Wide
5 −0.076 [−0.034,−0.021] Wide −0.062 [0.043,−0.013] Horizontal 0.061 [0.002, 0.039] Horizontal
6 −0.056 [0.023, 0.017] Horizontal 1.328 [−0.026, 0.021] Standard 0.109 [0.040,−0.036] Horizontal
7 1.177 [−0.024, 0.038] Standard 0.864 [−0.003,−0.018] Wide 0.282 [−0.025, 0.029] Standard
8 1.492 [−0.038, 0.018] Standard 0.598 [0.038, 0.040] Wide 0.072 [−0.041, 0.038] Horizontal
9 0.044 [0.045,−0.015] Horizontal 0.001 [−0.035, 0.027] Horizontal 0.586 [−0.007,−0.034] Wide
10 1.521 [0.025, 0.024] Standard 0.824 [−0.015, 0.039] Wide 0.099 [−0.041, 0.020] Horizontal
11 −0.029 [0.037, 0.005] Horizontal 0.857 [0.010,−0.030] Wide 0.091 [0.024,−0.027] Standard
12 0.059 [−0.005, 0.001] Horizontal 0.479 [−0.003, 0.011] Wide 0.798 [0.048, 0.018] Standard
13 −1.131 [−0.035,−0.021] Standard −0.580 [0.005, 0.008] Standard 1.264 [−0.019,−0.043] Standard
14 0.482 [−0.003, 0.031] Horizontal 0.129 [0.049, 0.002] Horizontal 0.030 [−0.023,−0.010] Horizontal
15 0.340 [−0.038, 0.035] Wide 0.904 [−0.032, 0.049] Standard −0.615 [−0.006,−0.008] Standard
16 −0.841 [−0.028,−0.006] Standard −0.090 [0.033, 0.036] Standard −0.082 [−0.028,−0.009] Horizontal

Table 2: Description for all 16 tasks for each of the 3 task sequences. Between tasks, we randomize the
orientation of the key with respect to the box (in radians), position of the box, and the type of key.

Figure 4: Left: an example of a vertical
insertion task. Right: an example of a hori-
zontal insertion task.

where sxy is the xy-coordinates of the robot end-effector,
sθ is the z-axis rotation of the end-effector, gz,u is the z-
coordinate of the top of the box, and gz,l is the z-coordinate
of the bottom. Note, in Fig. 4, that the box is composed
of three “layers,” each colored with a different shade of
gray. We measure task success on a scale of {0, 1, 2, 3}
based on which layer the key head reaches at the final
time-step of the episode, and report all results in terms of
the normalized scores by dividing by 3.

D.2 Robot Experiments

In our robot experiments, we design a series of 10 tasks with varying setups and objectives. We
describe these tasks below.

Task 1: Reaching. The first task we assigned to the robot is to reach a fixed goal position greach =

[0.466, 0.028, 0.153]
T without any obstacles. The reward function for this task is

r1(s,a) = 1− tanh(10 · ‖sxyz − greach‖2),
where sxyz are the 3D Cartesian coordinates of the robot end-effector.

Task 2: Marker insertion (A). The objective is to align the marker to the corresponding hole of a
marker rack. We specify this objective through a goal position gmarker-A = [0.443, 0.014, 0.152]

T for
the end-effector. The reward function for this task is

r2(s,a) = 1− tanh(10 · ‖sxyz − gmarker-A‖2).

Task 3: Eraser insertion. The objective is to align the eraser to the corresponding hole of the
same rack from the previous task. We specify this objective through a goal position geraser =

[0.448, 0.067, 0.152]
T for the end-effector. The reward function for this task is

r3(s,a) = 1− tanh(10 · ‖sxyz − geraser‖2),

Task 4: Bottle capping (A). The objective is to align the cap to a Gatorade bottle. We specify this
objective through a goal position gbottle-A = [0.469, 0.053, 0.189]

T for the end-effector. Different
from the previous reward functions, we additionally specify a waypoint w1 = [0.469, 0.053, 0.230]

T ,
as the bottle is significantly taller than the other objects from previous tasks. The reward function for
this task is

r4(st,at) =
1

2
(1(‖sxy − w1

xy‖2 < 0.03) · 1(|sz − w1
z | ≤ 0.005)

+ (1− tanh(10 · ‖sxyz − gbottle-A‖2))),

10

(a) Task 2: Marker insertion (A). (b) Task 3: Eraser insertion. (c) Task 4: Bottle capping (A).

(d) Task 5: Bottle capping (B). (e) Task 6: Block insertion (A). (f) Task 7: Block insertion (B).

(g) Task 8: Block insertion (C). (h) Task 9: Bottle capping (C). (i) Task 10: Marker insertion (B).

Figure 5: Individual learning curves for each task.

where sxy are the xy-coordinates of the end-effector, w1
xy are the xy-coordinates of the waypoint, sz

is the z-coordinate of the effector, and w1
z is the z-coordinate of the waypoint.

Task 5: Bottle capping (B). The objective is to align the cap to a plastic water bottle. We specify this
objective through a goal position gbottle-B = [0.469,−0.014, 0.210] for the end-effector. Similar to
the previous bottle task, because this bottle is also relatively tall, we additionally specify a waypoint
w2 = [0.469,−0.014, 0.240]. The reward function for this task is:

r5(st,at) =
1

2
(1(‖sxy − w2

xy‖2 < 0.03) · 1(|sz − w2
z | ≤ 0.005)

+ (1− tanh(10 · ‖sxyz − gbottle-B‖2))),

where w2
xy are the xy-coordinates of the waypoint and w2

z is the z-coordinate of the waypoint.

Task 6: Block insertion (A). The objective is to align the square block to the corresponding hole of
the toy cube. We specify this objective through a goal position gblock-A = [0.472,−0.002, 0.125]T
for the end-effector. The reward function for this task is

r6(s,a) = 1− tanh(10 · ‖sxyz − gblock-A‖2),

Task 7: Block insertion (B). The objective is to align the parallelogram-shaped block to the cor-
responding hole of the toy cube. We specify this objective through a goal position gblock-B =

[0.465,−0.015, 0.140]T for the end-effector. The reward function for this task is

r7(s,a) = 1− tanh(10 · ‖sxyz − gblock-B‖2),

Task 8: Block insertion (C). The objective is to align the octagon-shaped block to the corre-
sponding hole of the toy cube. We specify this objective through a goal position gblock-C =

11

(a) (b)
Figure 6: Ablations of the pre-training and online phases, evaluated on the same target task. The faint lines
correspond to the 3 random seeds; the solid lines represent their average.

[0.472,−0.060, 0.140]T for the end-effector. The reward function for this task is

r8(s,a) = 1− tanh(10 · ‖sxyz − gblock-C‖2),

Task 9: Bottle capping (C). The objective is to align the cap to the Vitamin water bottle. We specify
this objective through a goal position gbottle-C = [0.460,−0.032, 0.185]T for the end-effector. The
reward function for this task is

r9(s,a) = 1− tanh(10 · ‖sxyz − gbottle-C‖2),

Task 10: Marker insertion (B). The objective is to align the cap to the Vitamin water bottle. We
specify this objective through a goal position gmarker-B = [0.444,−0.020, 0.118]T for the end-effector.
The reward function for this task is

r9(s,a) = 1− tanh(10 · ‖sxyz − gmarker-B‖2),

All of the goal positions lie within a bounded region roughly of size 2cm× 4cm× 4cm.

E Additional Experimental Results
E.1 Improved data efficiency

One desirable property in sequential learning is compounding learning, i.e., improving data efficiency
as more tasks are seen. We evaluate this property on a held-out horizontal-insertion task after training
on a varying number of tasks, and summarize the results in terms of the final task success in Table 3.

of Tasks / Hor. Tasks 1 / 0 3 / 0 5 / 1 7 / 2

Ours 0.48 0.54 0.81 0.84

Table 3: Average task success after learning a varying
number of tasks. The performance trends upwards with
more tasks.

Generally, the task success trends upwards as
we increase the number of prior tasks we train
on, suggesting that the data efficiency of our
algorithm improves as we provide more tasks.
We hypothesize that the performance improves
with more tasks because of the heterogeneity in
our task sequence, i.e., having both horizontal
(H) and vertical (V) insertion tasks. In particular,
when N = 1 and N = 3, all the prior tasks are V tasks. When N = 5, the first H task is introduced,
leading to better transfer on the target task, which is also an H task. The introduction of the second H
task in the N = 7 case leads to another improvement, albeit a smaller one.

E.2 Ablations: Investigating Advantages of Prior Experience

The results from Sec. 3.1 demonstrate that the previously collected data samples, when appropriately
leveraged, are a powerful form of knowledge transfer. To verify that our algorithm utilizes this prior
experience more effectively than alternative design choices, we ablate the pre-training and online
improvement stages of our framework. All ablations are evaluated on the same target task.

12

Pre-training. Our algorithm pre-trains both the policy and critic with the relabeled data from Dsrc as
its first step of learning a new task. Alternatively, we can pre-train the critic only or not pre-train at all.
In this comparison, we randomly initialize all weights prior to pre-training to isolate its effects. The
results, averaged across 3 trials for each method, are presented in Fig. 6a, and suggest that pre-training
both the policy and critic weights leads to slightly more efficient learning than only pre-training the
critic. However, both pre-training schemes outperform the variant with no pre-training, demonstrating
the importance of this initial step.

Online improvement. In the online improvement step, our algorithm trains on a mixture of
filtered prior experience and new experience collected online. We compare this data com-
position to (1) training on a mix of unfiltered prior and new experience and (2) training on
new experience only. For each variant, we randomly initialize the policy and critic weights
and do not perform the pre-training stage to study the effects of data composition alone.

Task / Method Scratch Ours

1 1.11± 0.05 –

2 2.65± 0.24 0.96± 0.05
3 1.62± 0.02 1.30± 0.25
4 1.27± 0.09 0.66± 0.08
5 0.83± 0.15 0.53± 0.05
6 2.81± 0.23 0.57± 0.01
7 1.90± 0.03 0.50± 0.01
8 2.11± 0.28 0.81± 0.22
9 1.30± 0.23 0.78± 0.06
10 1.99± 0.19 0.60± 0.01

Table 4: The final distance to goal (in cen-
timeters) for each of the 10 tasks on the
Franka robot. We evaluate the policies af-
ter 10k environment steps for 10 trials, and
report the means and standard errors.

As shown in Fig. 6b, transferring the prior samples that
are likely under the current dynamics leads to improved
data efficiency.

E.3 Robot Experiment Results

In Fig. 5, we provide the individual learning curves for
each of the 10 tasks from our robot experiments. For
each data-point, we average the distance to the goal posi-
tion (in meters) at the final time-step across 10 evaluation
episodes. Our method attains a lower average distance
after 10K time-steps than learning from scratch for all 5
tasks following the initial reaching task. In Table 4, we
report the average final performance by task for the two
methods.

13

	Introduction
	Lifelong Reinforcement Learning via Experience Transfer
	Pre-Training on Prior Experience
	Improving with Online Experience

	Experiments
	Evaluating Forward Transfer
	Learning in the Real World

	Related Work
	Preliminaries
	Soft Actor-Critic
	Importance Weighting

	Hyperparameter Details
	Environment Setup
	Simulated Experiments
	Robot Experiments

	Additional Experimental Results
	Improved data efficiency
	Ablations: Investigating Advantages of Prior Experience
	Robot Experiment Results

