
Maximum Likelihood Constraint Inference on
Continuous State Spaces

Kaylene C. Stocking1, D. Livingston McPherson1, Robert P. Matthew2, Claire J. Tomlin1

1 University of California, Berkeley: {kaylene, david.mcpherson, tomlin}@berkeley.edu
2 University of California, San Francisco: robert.matthew@ucsf.edu

Abstract

When a robot observes another agent unexpectedly modifying their behavior, in-
ferring the most likely cause is a valuable tool for maintaining safety and reacting
appropriately. In this work, we present a novel method for inferring constraints
that works on continuous, possibly sub-optimal demonstrations. We first learn a
representation of the continuous-state maximum entropy trajectory distribution
using deep reinforcement learning. We then use Monte Carlo sampling from this
distribution to generate expected constraint violation probabilities and perform con-
straint inference. When the agent’s dynamics and objective function are known in
advance, this process can be performed offline, allowing for real-time constraint in-
ference at the moment demonstrations are observed. We demonstrate our approach
on two continuous systems, including a human driving a model car.

1 Introduction

The behavior of an agent is an important source of information about their goals and surroundings.
For example, inverse reinforcement learning estimates the reward function an agent appears to be
optimizing [12]. In many practical situations, however, we already have a good idea of the reward
function. In cases like these, an agent’s actions can still provide useful information. Consider a driver
who temporarily swerves out of their lane to avoid an obstacle. Even if we can’t directly observe the
obstacle, a reasonable inference is that something is preventing the driver from taking the expected
path. The driver’s swerving behavior is surprising if no obstacle is present, but becomes much more
likely when we incorporate a possible obstacle into our model. This intuition can be formalized as
maximum likelihood constraint inference (MLCI), first developed in [10]. MLCI uses the maximum
entropy framework [12] to identify which constraint in a constraint hypothesis set provides the best
explanation for unexpected demonstrator behavior. Constraint inference may be an especially useful
form of unsupervised learning for robots, which can use identified constraints to maintain their own
safety even when performing a different task than the demonstrator.

Unfortunately, the MLCI algorithm presented in [10] only works for system models with discrete, fi-
nite state-action spaces. In this work, we extend MLCI to continuous state spaces. Our method retains
several key advantages from [10], including working with sub-optimal demonstrations and allowing
for most calculations to be pre-computed before any constrained demonstrations are observed.

2 Related Work

Our work is most directly inspired by the maximum likelihood method introduced by [10], which
identifies the most likely constraint(s) from a hypothesis set, but only works with discrete state-
action spaces. Many other methods work directly with continuous dynamics, but drop the maximum
likelihood feature. Chou et al. [2] assume that all possible trajectories that could earn higher reward
than the demonstration must be constrained in some way. Other methods use heuristics about the

NeurIPS 2021 Workshop on Robot Learning: Self-Supervised and Lifelong Learning, Virtual, Virtual

demonstrator’s behavior rather than an explicit reward function [8, 4, 6]. Anwar et al. [1] recently
presented an approach that works with continuous state-action spaces and retains the maximum
likelihood framework by using deep reinforcement learning to identify a constraint function over the
state-action space. The method we propose here similarly uses deep RL to handle continuous state
spaces, but focuses instead on learning constraints from a pre-specified constraint hypothesis set. One
key outcome of this difference in perspective is that our method allows for pre-computation before
observing a demonstration, enabling a robot to react to a newly identified constraint in real-time.

3 Constraint Inference On Continuous State Spaces

3.1 Model Preliminaries

Our approach relies on a system model formulated as a deterministic Markov Decision Process
(MDP). The MDP is a tuple of four elements: (S, A, T , R), where S is the state space, A is the set
of possible actions to take at each state, T : S ×A → S is the transition kernel, and R : Ξ→ R is
the reward function. Each trajectory ξ is a sequence (st ∈ S, at ∈ A) for t ∈ [0 : T], and the space
of all possible trajectories is Ξ.

S and A can be either discrete or continuous; if both are discrete and finite, we say that the MDP
is tabular. The MLCI approach developed by [10] only works for tabular MDPs. The method we
propose in section 3.3, however, admits MDPs with discrete or continuous state spaces. Note that the
MDP formulation requires discrete time steps; however, continuous dynamics can be approximated
well with a sufficiently small discrete time step using standard simulation methods [7].

3.2 Maximum Entropy Likelihood on Trajectories

After observing a demonstrator’s behavior, we suspect that they may be avoiding a constraint when
their trajectory is surprising, in the sense of accumulating significantly less reward than should be
possible without a constraint. We can formalize this intuition by defining a distribution of expected
demonstrator behavior. Following [12], we adopt the maximum entropy likelihood distribution, under
which the probability density of continuous-space trajectories is defined as:

π(ξ) =
eβR(ξ)∫

ξ′∈Ξ
eβR(ξ′)dξ′

=
1

Z
q(ξ) (1)

where β is a temperature parameter that reflects how noisy the demonstrator is, q(ξ) = eβR(ξ) is the
unnormalized trajectory probability, and Z =

∫
q(ξ)dξ is a normalizing constant. This distribution is

defined analogously for discrete state-action spaces, where Z is a sum instead of an integral.

Constraints invalidate any trajectory that would otherwise enter the constrained region of the state-
action space, rendering its probability zero. Therefore, when we augment a deterministic MDP with
a constraint region c, we obtain a new maximum entropy distribution:

πc(ξ) =

{
1
Zc
q(ξ), (st, at) /∈ c ∀t ∈ [0 : T]

0, otherwise
(2)

Where Zc is a new, smaller normalizing constant that reflects the trajectory probability mass removed
by imposing the constraint. Let Z0 be the normalizing constant for the original, unconstrained MDP.
Assuming the demonstrator doesn’t violate c, their behavior is more likely under the new distribution
because Zc < Z0. In fact, given a uniform belief prior over each constraint in a constraint hypothesis
set C, the most likely constraint is the one that yields the smallest Zc. Therefore, to perform MLCI, it
is sufficient to calculate the ratio Zci/Z0 for each ci ∈ C and identify the smallest value. If subsequent
demonstrations violate other ci’s, these are simply removed from the hypothesis set, and the smallest
remaining Zci/Z0 indicates the likeliest constraint.

Theorem 1 Let 1ci(ξ) be the indicator function that trajectory ξ does not violate constraint ci at
any t ∈ [0 : T]. We have:

Zci
Z0

= Eξ∼π0 [1ci(ξ)]

2

(A proof is provided in the supplementary material.) Theorem 1 suggests that a MLCI algorithm
requires two components: a representation of the unconstrained maximum entropy distribution π0(ξ),
and a way to calculate expected constraint violation.

3.3 A Monte Carlo Method for Continuous MLCI

3.3.1 Deep Reinforcement Learning of π0(ξ)

As we will see in the following section, a direct representation of the maximum entropy distribution
π0(ξ) isn’t necessary for MLCI; simply being able to sample trajectories from this distribution is
sufficient. This motivates us to approximate π0(ξ) by leveraging deep reinforcement learning (RL).
Following [1], consider the KL-divergence between the true maximum entropy distribution π0(ξ)
and a learned policy πθ(ξ) parameterized by θ.

DKL(πθ||π0) = Eξ∼πθ [logπθ(ξ)− logπ0(ξ)]

= Eξ∼πθ [logπθ(ξ)− βR(ξ) + logZ0]
(3)

Since log Z0 is a constant, we can minimize the divergence by maximizing the following modified
expected reward (or objective) function:

J(πθ) = Eξ∼πθ [R(ξ)− 1

β
logπθ(ξ)] (4)

The parameterization of πθ is an important limiting factor in how good of an approximation can be
achieved. Most RL algorithms working with continuous action spaces learn a Gaussian distribution
over actions at each state (e.g. see [3]). However, this is unsuitable for our application because it
results in a policy that commits to a single “global” strategy rather than simultaneously exploring
multiple strategies with probability determined by their expected reward. Therefore, we instead grid
the continuous range of possible action inputs into a few discrete options. A categorical action policy
can then be used to learn action distributions with an arbitrary shape at each state. When a short time
step δt is used, the discretization of the action input only slightly limits the space of policies that can
be learned, because switching between discrete values closely approximates any continuous value.

3.3.2 Sampling-Based Approximation of Zci/Z0

The learned policy πθ doesn’t directly yield estimates of the trajectory probability distribution
π0(ξ). However, for a potential constraint ci of interest, we can obtain a Monte Carlo estimate
of Eξ∼π0

[1ci(ξ)] by simulating policy executions many times and checking whether each sampled
trajectory ξ ∼ πθ violates ci. Since the constraint avoidance indicator 1ci(ξ) for ξ ∼ πθ is a Bernoulli
random variable, Hoeffding’s inequality tells us that the Monte Carlo estimate will deviate from the
true value by more than ε with exponentially decreasing probability 2e−2ε2n with number of samples
n. By Theorem 1, calculating the fraction of trajectories that violate each hypothesized constraint is
sufficient for determining the most likely constraint.

Neither learning πθ nor sampling trajectories from this policy relies on observing any demonstrations.
Therefore, when the demonstrator’s objective function and the constraint hypothesis set are known in
advance, both steps can be pre-computed. At inference time, the set of constraints violated by the
demonstrator is used to rule these out from the hypothesis set, and the remaining constraint with the
highest expected violation (smallest Zci/Z0) is the most likely constraint.

4 Experiments

4.1 Simulated Pendulum System

In the pendulum system, an agent attempts to navigate from a random starting state (angle θ and
angular velocity θ̇) to a random goal state while minimizing control effort and avoiding a ground-truth
constraint, either C1 or C2 (see Figure 1a). Both the demonstrator and the inference algorithm use
the same simulated dynamics and objective function. To analyze constraint inference performance
on this system, we sample demonstrations at random and rank the most likely constraints across
200 trials. We compare the performance of our algorithm to an approximated discrete state space

3

Figure 1: Constraint inference on pendulum dynamics. a) The constraint hypothesis space and ground
truth constraints (C1 or C2). The constraint hypothesis space evenly divides the state space into 100
cells. b) Constraint inference performance of our proposed method (“Continuous”), compared to a
discretized state space baseline method (“Discrete”). Our method is better at inferring C2, where the
dynamics are unstable.

Figure 2: Constraint inference on a 1/10-scale car trajectory along a racetrack. a) The car, piloted
by a human, approaches the highlighted obstacle. b) All demonstration trajectories (cyan) and true
obstacle region (orange) overlaid on constraint hypothesis set (empty boxes). c) One of two possible
constraints is inferred (yellow) after observing a single demonstration.

approach [11] in Figure 1b. Our method identifies the ground truth constraint as one of the most likely
after observing only a few demonstrations for both C1 and C2. The inference accuracy of our method
is similar to the baseline for C1, but better for C2, where the pendulum dynamics are unstable and the
discrete state space approximation suffers accordingly. This difference highlights the advantage of
using a continuous state space for performing constraint inference on continuous dynamical systems.

4.2 Model Car Remote-Controlled by a Human Driver

To demonstrate the effectiveness of our method in a real-world setting, we performed constraint
inference on demonstrations from a human radio-controlling a 1/10 scale model car along a racetrack,
attempting to stay in their lane and reach the goal quickly while avoiding an obstacle region marked on
the road. For inference, we modeled the car system with idealized 4-dimensional unicycle dynamics,
where the control inputs are turning velocity and forward acceleration. For each of 7 demonstrations,
the most likely constraint was determined by removing constraints violated by the demonstration
from the candidate set, then selecting the most likely remaining constraint. This calculation can
be performed very quickly - all that is required is to determine which candidate constraints the
demonstration violates. As shown in Figure 2, a constraint region near the obstacle location is
consistently identified after observing a single human demonstration.

5 Conclusion

This paper presented a novel algorithm for maximum likelihood constraint inference that works on
MDPs with continuous state spaces. For many continuous dynamical systems, these MDPs provide
a much closer approximation to the true underlying dynamics than is possible with tabular spaces.
The maximum likelihood framework we adopt works well even for sub-optimal demonstrations,
allowing robots to infer constraints on trajectories generated by humans in real-world environments
in a self-supervised manner.

4

References
[1] Usman Anwar, Shehryar Malik, Alireza Aghasi, and Ali Ahmed. Inverse Constrained Reinforcement

Learning. arXiv:2011.09999 [cs, eess], May 2021. URL http://arxiv.org/abs/2011.09999. arXiv:
2011.09999.

[2] G. Chou, N. Ozay, and D. Berenson. Learning Constraints From Locally-Optimal Demonstrations Under
Cost Function Uncertainty. IEEE Robotics and Automation Letters, 5(2):3682–3690, April 2020. ISSN
2377-3766. doi: 10.1109/LRA.2020.2974427. Conference Name: IEEE Robotics and Automation Letters.

[3] The garage contributors. Garage: A toolkit for reproducible reinforcement learning research, 2019. URL
https://github.com/rlworkgroup/garage.

[4] Changshuo Li and Dmitry Berenson. Learning Object Orientation Constraints and Guiding Constraints for
Narrow Passages from One Demonstration. In Dana Kulić, Yoshihiko Nakamura, Oussama Khatib, and
Gentiane Venture, editors, 2016 International Symposium on Experimental Robotics, Springer Proceedings
in Advanced Robotics, pages 197–210, Cham, 2017. Springer International Publishing. ISBN 978-3-319-
50115-4. doi: 10.1007/978-3-319-50115-4_18.

[5] Weiwei Li and Emmanuel Todorov. Iterative Linear Quadratic Regulator Design for Nonlinear Bio-
logical Movement Systems:. In Proceedings of the First International Conference on Informatics in
Control, Automation and Robotics, pages 222–229, Setúbal, Portugal, 2004. SciTePress - Science and
and Technology Publications. ISBN 978-972-8865-12-2. doi: 10.5220/0001143902220229. URL
http://www.scitepress.org/DigitalLibrary/Link.aspx?doi=10.5220/0001143902220229.

[6] H. Lin, M. Howard, and S. Vijayakumar. Learning null space projections. In 2015 IEEE International
Conference on Robotics and Automation (ICRA), pages 2613–2619, May 2015. doi: 10.1109/ICRA.2015.
7139551. ISSN: 1050-4729.

[7] C. Karen Liu and Dan Negrut. The Role of Physics-Based Simulators in Robotics. Annual Review of
Control, Robotics, and Autonomous Systems, 4(1):35–58, May 2021. ISSN 2573-5144, 2573-5144. doi:
10.1146/annurev-control-072220-093055. URL https://www.annualreviews.org/doi/10.1146/
annurev-control-072220-093055.

[8] Lucia Pais, Keisuke Umezawa, Yoshihiko Nakamura, and Aude Billard. Learning Robot Skills Through
Motion Segmentation and Constraints Extraction. HRI Workshop on Collaborative Manipulation, page 5,
2013.

[9] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal Policy
Optimization Algorithms. arXiv:1707.06347 [cs], August 2017. URL http://arxiv.org/abs/1707.
06347. arXiv: 1707.06347.

[10] Dexter R. R. Scobee and S. Shankar Sastry. Maximum Likelihood Constraint Inference for Inverse
Reinforcement Learning. arXiv:1909.05477 [cs, eess, stat], September 2019. URL http://arxiv.org/
abs/1909.05477. arXiv: 1909.05477.

[11] Kaylene C. Stocking, David L. McPherson, Robert P. Matthew, and Claire J. Tomlin. Discretizing Dynamics
for Maximum Likelihood Constraint Inference. arXiv:2109.04874 [cs, eess], September 2021. URL
http://arxiv.org/abs/2109.04874. arXiv: 2109.04874.

[12] Brian D Ziebart, Andrew Maas, J Andrew Bagnell, and Anind K Dey. Maximum Entropy Inverse
Reinforcement Learning. Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence,
page 6, 2008.

5

http://arxiv.org/abs/2011.09999
https://github.com/rlworkgroup/garage
http://www.scitepress.org/DigitalLibrary/Link.aspx?doi=10.5220/0001143902220229
https://www.annualreviews.org/doi/10.1146/annurev-control-072220-093055
https://www.annualreviews.org/doi/10.1146/annurev-control-072220-093055
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1909.05477
http://arxiv.org/abs/1909.05477
http://arxiv.org/abs/2109.04874

Supplementary Material

1.1 Highly Optimal Demonstrators

One drawback to a Monte-Carlo approach to calculating expected constraint violation is that if the demonstrator
behaves close to optimally (i.e. with a large β parameter), the expected unconstrained trajectories will be tightly
clustered around the most optimal path(s). This makes accurate constraint inference difficult due to the paucity
of samples with lower rewards, which would only be accrued when acting under a constraint that precludes
higher-reward options. We can circumvent this problem by learning a πθ distribution with a lower β than the
demonstrator, and then use techniques from importance sampling to correct our results for the true reward
function. To formalize this idea, let’s say we sample from πs,0(ξ) = 1

Zs,0
eβsR(ξ), but the true reward function

induces the distribution πd,0(ξ) = 1
Zd,0

eβdR(ξ). We wish to determine Zd,ci/Zs,0 for each ci ∈ C so that we
can identify the likeliest constraint by finding the smallest Zd,ci . Since

Zd,ci
Zs,0

=
Zd,ci
Zs,ci

Zs,ci
Zs,0

(5)

and we can use Theorem 1 to estimate the second term Zs,ci/Zs,0, all that remains is to calculate the first term
Zd,ci/Zs,ci . The following theorem allows us to do this:

Theorem 2
Zd,ci
Zs,ci

= Eξ∼πs,ci [e
(βd−βs)R(ξ)]

(A proof is provided below.) Since we assume deterministic dynamics, sampling from πs,ci can be easily
achieved by sampling from πs,0 and discarding trajectories that violate constraint ci.

1.2 Proofs of Theorems

For simplicity, the proofs here assume a continuous state-action space, but similar results hold for the discrete
setting. Recall that q(ξ) = eβR(ξ). Furthermore, define the normalized trajectory distributions as π0(ξ) =
1
Z0
q(ξ) for the nominal unconstrained case and πc(ξ) = 1

Zc
q(ξ)1c(ξ) for the constrained case. Although it has

been omitted for readability, all integrals are over ξ ∈ Ξ.

1.2.1 Proof of Theorem 1:

Zci
Z0

=
1

Z0

∫
1ci(ξ)dξ

=

∫
π0(ξ)1ci(ξ)dξ

= Eξ∼π0 [1ci(ξ)]

(6)

Note that the expression for Zci comes from removing trajectories that violate ci from the integral, so that the
constrained maximum entropy distribution πci integrates to 1.

1.2.2 Proof of Theorem 2:

First, define qd(ξ) = eβdR(ξ), qs(ξ) = eβsR(ξ), and πs,c(ξ) = 1
Zs,c

qs(ξ)1c(ξ). We have:

Zd,c
Zs,c

=
1

Zs,c

∫
qd(ξ)1c(ξ)dξ

=
1

Zs,c

∫
qd(ξ)

πs,c(ξ)
πs,c(ξ)1c(ξ)dξ

=
1

Zs,c

∫
eβdR(ξ)

eβsR(ξ)/Zs,c
πs,c(ξ)1c(ξ)dξ

=

∫
e(βd−βs)R(ξ)πs,c(ξ)dξ

= Eξ∼πs,c [e
(βd−βs)R(ξ)]

(7)

The constraint avoidance indicator 1c(ξ) disappears in line 4 because it is redundant with πs,c(ξ).

6

1.3 Experimental design

For both experimental systems, we use proximal policy optimization (PPO) to optimize the objective in equation
4 due to its good performance and stability [9].

1.3.1 Pendulum system

The pendulum model consists of a 2-dimensional state space (angle θ and angular velocity θ̇). The 1-dimensional
control input is the normalized torque applied at the base of the pendulum:

θ̈ =
g

l
· sin(θ) + u (8)

The constraint hypothesis set is an evenly spaced grid of 100 non-overlapping cells that cover the state space of
θ ∈ [0, 2π] and θ̇ ∈ [−6, 6]. The demonstrator wants to arrive at a particular goal state ŝT at the end of a T = 5s
period while minimizing the total squared torque and avoiding the true constraint region, K. In practice, this is
achieved by optimizing the reward function

u∗ = arg max
u

−[α1‖s(T)− ŝT ‖22 + α2

∫ T

0

u(t)2dt]

s.t. s(t) /∈ K ∀t ∈ [0, T]

(9)

α1 = 80 and α2 = 0.05 were chosen so that most trajectories terminate in a small neighborhood around the goal
state. To optimize this objective for constrained demonstrations, we used the constrained optimal control method
described in [11]. Briefly, this method uses 10 iterations of the Iterative Linear-Quadratic Regulator (iLQR)
algorithm [5], and outputs the best of 3 random initializations. We generated 100 demonstration trajectories
with random start and goal points for each ground-truth constraint C1 and C2. The ground-truth constraints are
shown in Figure 1a. After discarding start/goal pairs for which the demonstrator wasn’t able to reach the goal
state in the 5s time horizon, 65 demonstrations remained for each ground-truth constraint. Note that since the
pendulum dynamics are nonlinear, these demonstrations are not guaranteed to be optimal and may correspond to
local maxima in the reward function.

The MDP for this system was formulated using a timestep of δt = 1/60s and 5 discrete action choices linearly
distributed between u = −1 and u = 1. A separate deep RL policy was trained for each goal state by inserting
the reward function in equation 9 into the objective derived in equation 4. Using β = 1.5 was found to provide
the best fit to the demonstrations. Random starting states were used during training. After training, sampling
was performed by using the same starting state as the demonstrator and performing 10,000 independent policy
rollouts on the simulated pendulum environment. Since each demonstration had a different start and goal state,
at inference time we averaged expected constraint violations across the deep RL policies corresponding to each
demonstration.

The constraint inference error metric in Figure 1b refers to the rank of the ground truth constraint in the
algorithm’s ranking of the most likely constraints. The best possible score is 1, which would indicate that the
ground truth constraint is always picked as the true constraint. Note that since the demonstrations have random
start and end points, some of them will be uninformative about the ground truth constraint, for example in the
case where the constrained region is extremely unlikely to be entered by an unconstrained demonstrator.

1.3.2 Model car system

Figure 3: Constrained demonstrations for the car model car system with the true obstacle region
(orange) and constraint hypothesis set (empty boxes). This is a version of Figure 2b with the x and y
values indicated.

The position of the model car was recorded with an Optitrack system, and the car’s speed and heading were
inferred from the position data. We modeled the car with idealized unicycle dynamics, which have the following
form:

ẋ = v cos(θ) θ̇ = u1

ẏ = v sin(θ) v̇ = u2

(10)

7

The human attempted to drive to the end of the racetrack segment while avoiding the obstacle region marked on
the road and otherwise staying in their lane when possible. We modeled this behavior with the following reward
function:

u∗ = arg max
u

−
∫ T

0

∥∥∥∥α1(x(t)− x̂)
α2(y(t)− ŷ)

∥∥∥∥
1

dt

s.t. s(t) /∈ K ∀t ∈ [0 : T]

(11)

where the roadway is aligned with the y-axis so that the car starts at (x(0) = 0, y(0) = 0), x̂ = 0 is the center
of the left lane, and ŷ = 8.5 is the far end of the road segment. K is an obstacle in the roadway that prevents
the human from being in the left lane between y = 6.7 and y = 7.4, but is unknown to our algorithm. T is a
variable time horizon where the episode ends once the car crosses the y = ŷ line.

To formulate the MDP model, we choose a discrete action space with an evenly spaced grid of 9 points between
(u1 = -0.5, u2 = -1) and (u1 = 0.5, u2 = 1). We use a simulation time-step of δt = 0.05s. These values, as well
as the parameters α1 = 100 and α2 = 0.05, and the human’s temperature parameter β = 0.005, were chosen
to create a close match between the human’s behavior when not attempting to avoid an obstacle (i.e. ignoring
the constraint K) and a deep RL policy trained with this objective. The constraint hypothesis set is 28 evenly
spaced regions along the roadway in (x, y) space, 14 in each lane. The real-world racetrack and a diagram of
the corresponding MDP model is shown in Fig. 2. A single deep RL policy was trained to perform the task
of driving the car following the reward function in equation 11, with an additional reward bonus for reaching
the goal and a penalty for leaving the track. 1000 trajectories were sampled from the resulting πθ distribution.
Trajectories that left the racetrack or did not reach the goal were discarded. The remaining samples allowed us to
rank the most likely candidate constraints before observing any demonstrations.

8

	Introduction
	Related Work
	Constraint Inference On Continuous State Spaces
	Model Preliminaries
	Maximum Entropy Likelihood on Trajectories
	A Monte Carlo Method for Continuous MLCI
	Deep Reinforcement Learning of 0()
	Sampling-Based Approximation of Zci / Z0

	Experiments
	Simulated Pendulum System
	Model Car Remote-Controlled by a Human Driver

	Conclusion
	Highly Optimal Demonstrators
	Proofs of Theorems
	Proof of Theorem 1:
	Proof of Theorem 2:

	Experimental design
	Pendulum system
	Model car system

