
OffWorld Gym: Open-Access Physical Robotics
Environment for Real-World Reinforcement

Learning Benchmark and Research

Ashish Kumar Y

OffWorld, Pasadena, CA, USA
John B. Lanier

OffWorld, Pasadena, CA, USA

Qiaozhi Wang
OffWorld, Pasadena, CA, USA

Alicia Kavelaars
OffWorld, Pasadena, CA, USA

Ilya Kuzovkin Y

OffWorld, Pasadena, CA, USA
ilya.kuzovkin@offworld.ai

Abstract

Success stories of applied machine learning can be traced back to the datasets and
environments that were put forward as challenges for the community. The challenge
that the community sets as a benchmark is usually the challenge that the community
eventually solves. The ultimate challenge of reinforcement learning research is to
train real agents to operate in the real environment, but there is no common real-
world benchmark to track progress of RL on physical robotic systems. To address
this issue we have created OffWorld Gym – a collection of real-world environments
for reinforcement learning in robotics with free public remote access. In this work
we introduce the system and present experimental results that demonstrate the
feasibility of learning on a real robotic system. We train a mobile robot end-to-end
to solve simple navigation task relying solely on camera input and without the
access to location information. Close integration into existing ecosystem allows the
community to start using OffWorld Gym without any prior experience in robotics
and takes away the burden of managing a physical robotics system, abstracting it
under a familiar API. To start training, visit https://gym.offworld.ai.

1 Introduction

Reinforcement learning [1] offers a strong framework to approach machine learning problems that can
be formulated in terms of agents operating in environments and receiving rewards. Coupled with the
representational power and capacity of deep neural networks [2], this framework has enabled artificial
agents to achieve superhuman performance in Atari games [3], Go [4], and real time strategy games
such as Dota 2 [5] and StarCraft II [6]. Deep reinforcement learning has been successfully applied to
simulated environments, demonstrating the ability to solve control problems in discrete [7, 8, 9] and
continuous [10, 11] action spaces, perform long-term planning [12, 13], use memory [14], explore
environments efficiently [15], and even learn to communicate with other agents [16]. These and
many other capabilities proven by deep reinforcement learning (DRL) methods [17] hold an inspiring
promise of the applicability of DRL to real world tasks, particularly in the field of robotics.

Despite the fact that many consider operations in real world settings to be the ultimate challenge
for reinforcement learning research [18], the search for solutions to that challenge is being carried

NeurIPS 2021 Workshop on Robot Learning: Self-Supervised and Lifelong Learning, Virtual, Virtual

https://gym.offworld.ai

Figure 1: The top row shows the real (left) and the simulated (right) instances of the
MonolithDiscrete environment. The users have same access to both via the same API inter-
face, allowing for a seamless transition between a simulated and a real versions of an environment.
The bottom row shows RGB and depth inputs in both instances from the robot’s perspective.

out predominantly in simulated environments [19, 20, 21, 22, 11, 23, 24, 8, 25, 26]. This focus on
simulated environments as opposed to physical ones can be attributed to the high difficulty of training
in real world environments. High sample complexity of modern DRL methods makes collecting a
sufficient amount of observations on a real robotic system both time consuming and challenging from
a maintenance standpoint. As a result, the training of real world agents has been approached in a
variety of ways, both directly [27, 28, 29, 30, 31, 32, 33, 34] and using simulation-to-real transfer
learning to minimize experience needed in a real setting [35, 36, 37]. Recent works on imitation
learning [30, 38, 39, 40, 41, 42] and reduction of sample complexity [43, 44, 45, 46, 47] also provide
a path towards making training in real feasible.

From the previous major successes of machine learning, we see that the goal the community sets
as a benchmark is usually the goal that the community eventually solves. Thus to solve the hard
problems in RL for the real world, the RL community must add real-world environments to their set
of benchmarks. Adding a common physical benchmark environment to the set of canonical reference
tasks such as Atari games [48] and MuJoCo creatures [49] would enable future research to take into
account, and hopefully accelerate, the applicability of RL methods to real world robotics.

2 A Physical Robotic Environment for Reinforcement Learning

In this work, we present four real-world, publicly-accessible, remote-operated robotics RL environ-
ments from the OffWorld Gym framework1, consisting of two tasks in both discrete and continuous
control formulations. These environments conform to the OpenAI gym API while remote-controlling
a real robot maintained by the authors and address general robotics challenges such as locomotion,
navigation, planning, and obstacle avoidance. In each task, the robot must reach a visual beacon
while relying solely on visual input. Simulated variants of these environments are also provided. For
an overview of similar systems please see the “Related work" section of supplementary materials.

The first pair of environments features a navigation task in a walled enclosure (3× 4× 2 meters) in
which a wheeled robot has to traverse an uneven Moon-like terrain to reach an alluring visual beacon
introduced by Kubrick et al. [50]. The robot receives 320× 240 RGBD camera input and nothing
else. The environment control server tracks the robot location using an HTC ViveTM tracker and two

1A video of an agent controlling the robot in a real environment: https://youtu.be/HDViFqvB3Co

2

https://youtu.be/HDViFqvB3Co

Figure 2: The real environment with obsta-
cles and a sparse reward for reaching the
monolith. An agent has to solve visual ob-
stacle avoidance to complete the task.

Figure 3: Object tracking for the environment con-
trol system. The two lighthouse components track
robot’s location. The monolith is installed in the mid-
dle of the world coordinate frame.

base stations (Figure 3) but this information is not available to the learning agent and is only used
internally by the environment control script to calculate rewards, reset the environment and achieve
new initial locations at the start of each episode.

The MonolithDiscreteReal environment has a discrete action space with four basic actions: left,
right, forward, backward, each applying a fixed velocity to the robot with a 2-second step duration.
The continuous action space variant, MonolithContinuousReal provides smooth controls to the
linear and angular velocities of the robot. A sparse reward of +1.0 is assigned when the robot
(Husarion Rosbot [51], dimensions 20.0× 23.5× 22.0 cm) approaches the monolith within a radius
of 40.0 cm. The environment is reset upon successful completion of the task, reaching the limit of
100 steps or approaching the boundary of the environment. After each reset, the robot is moved to
a random position and orientation. Figure 1 (left) shows the environment and the input stream that
the agent receives. The second pair of environments currently under development inherits all of the
characteristics of the first one, but is made more challenging by adding obstacles that the robot has to
avoid (see Figure 2). Developing a robust solution to this task would demonstrate the applicability
of reinforcement learning to the problem of visual obstacle avoidance in the absence of a map and
location information.

Figure 4: The diagram of the major components of the system architecture of OffWorld Gym

As we further expand the OffWorld Gym framework’s collection by building additional enclosures
with various robotic tasks, we will cover a wide range of challenges for robotic systems, provide stable
benchmarks, and make a step toward applicability of developed solutions to real world and industrial
applications. OffWorld Inc. is committed to providing long-term free support and maintenance of the
physical environments.

3

2.1 The architecture of the system

OffWorld Gym consists of three major parts: (a) a Python library that is running on the client machine,
(b) the server that handles communication, resource management and control of the environment
(reward, episode reset, etc.), (c) the physical enclosure that provides power and network infrastructure,
and (d) the robot itself. Figure 4 gives an overview of the architecture, its components and interactions.
Please see supplementary materials for the details on hardware specification.

The OffWorld Gym library provides the API to access the environments. The client side of the library
forwards RL agent’s actions to the gym server. The server processes the actions and forwards them
to the robot. The robot completes the requested action (movement, position reset, etc) and sends
telemetry back to the action server. The server processes the telemetry and creates the state variable
that is sent back to the client as an observation for the agent. The control logic and the learning
process are executed on user’s workstation and the user is thus free to explore any algorithmic
solutions and make use of any amount of computational resources available at their disposal.

3 Experimental Validation

The purpose of our experimental work is threefold: to demonstrate the soundness of the system and
feasibility of learning, provide the first set of benchmark results for modern RL algorithms, and to
empirically estimate the sample complexity of learning a visual navigation task end-to-end on a real
robot from camera inputs directly to actions.

We trained Double DQN [52] and Soft Actor-Critic (SAC) [53] agents in the discrete action space
variant of MonolithReal environment and a SAC agent in the continuous variant of the same
environment. Figure 5 shows the learning curves for all three experiments.

Real environment, discrete action space, Double DQN Real environment, continuous action space, Soft Actor CriticReal environment, discrete action space, Soft Actor Critica. c.b.

Figure 5: Learning curves in discrete and continuous variants of the environment. a. Double DQN
trained end-to-end with discrete actions space: https://youtu.be/HDViFqvB3Co b. Soft Actor-
Critic solves the discrete action space variant of the environment. c. SAC achieves intelligent behavior
in the continuous variant of the environment: https://youtu.be/Nbgq6c78yJg.

The Double DQN agent’s neural network architecture consisted of a 320× 240 visual (depth channel
only) input, three convolutional layers each with four 5× 5 filters and max pooling, followed by two
fully connected layers of size 16. Leaky ReLU activations were used. The network has 3381 trainable
parameters. The Adam optimizer was used with a learning rate of 0.001 and a batch size of 32. The
circular replay buffer was of size 25, 000, and experience was gathered in an epsilon-greedy fashion,
where epsilon was linearly annealed from 0.9 to 0.1 over the first 40, 000 steps. The discount factor
was 0.95.

The SAC agent’s neural network architecture has 84× 84 visual (depth channel only) input, followed
by three convolutional layers with 16, 32, and 64 filters of sizes 8× 8, 4× 4, and 1× 1, respectively.
This was followed by two fully connected layers of size 64. ReLU activations were used. In total
the network has 757,236 trainable parameters. The Adam optimizer was used with a learning rate of
0.0003 and a batch size of 1024. Updates were performed after every experience step. The circular
replay buffer was of size 500, 000. α was learned to match an entropy target of 0.2 ∗ − log(1/|A|)
for discrete spaces and 0.2 ∗ − dim(A) for continuous spaces. The discount factor was 0.99.

The results confirm the overall soundness of the proposed system and demonstrate feasibility of
learning. We count on community involvement to evaluate other existing algorithms, explore different
architectures and methods in order to identify the state of the art algorithms for the tasks presented in
OffWorld Gym and supplement the experimental evaluation of newly proposed methods with a set of
challenge in the real physical world.

4

https://youtu.be/HDViFqvB3Co
https://youtu.be/Nbgq6c78yJg

Acknowledgments

The authors would like to thank Eric Tola, Matt Tomlinson, Matthew Schwab and Piyush Patil for
their help with the mechanical and electrical design and implementation.

References
[1] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press,

2018.

[2] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):436,
2015.

[3] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. Nature, 518(7540):529, 2015.

[4] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur
Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of
go without human knowledge. Nature, 550(7676):354, 2017.

[5] OpenAI. Openai five. https://blog.openai.com/openai-five/, 2018.

[6] Oriol Vinyals, Igor Babuschkin, Junyoung Chung, et al., and David Silver. AlphaStar:
Mastering the Real-Time Strategy Game StarCraft II. https://deepmind.com/blog/
alphastar-mastering-real-time-strateg y-game-starcraft-ii, 2019.

[7] Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney,
Dan Horgan, Bilal Piot, Mohammad Azar, and David Silver. Rainbow: Combining improve-
ments in deep reinforcement learning. In Thirty-Second AAAI Conference on Artificial Intelli-
gence, 2018.

[8] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap,
Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforce-
ment learning. In International conference on machine learning, pages 1928–1937, 2016.

[9] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[10] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

[11] Yan Duan, Xi Chen, Rein Houthooft, John Schulman, and Pieter Abbeel. Benchmarking deep re-
inforcement learning for continuous control. In International Conference on Machine Learning,
pages 1329–1338, 2016.

[12] Xiaoxiao Guo, Satinder Singh, Honglak Lee, Richard L Lewis, and Xiaoshi Wang. Deep learning
for real-time atari game play using offline monte-carlo tree search planning. In Advances in
neural information processing systems, pages 3338–3346, 2014.

[13] Arthur Guez, Mehdi Mirza, Karol Gregor, Rishabh Kabra, Sébastien Racanière, Théophane We-
ber, David Raposo, Adam Santoro, Laurent Orseau, Tom Eccles, et al. An investigation of
model-free planning. arXiv preprint arXiv:1901.03559, 2019.

[14] Greg Wayne, Chia-Chun Hung, David Amos, Mehdi Mirza, Arun Ahuja, Agnieszka Grabska-
Barwinska, Jack Rae, Piotr Mirowski, Joel Z Leibo, Adam Santoro, et al. Unsupervised predic-
tive memory in a goal-directed agent. arXiv preprint arXiv:1803.10760, 2018.

[15] Adrien Ecoffet, Joost Huizinga, Joel Lehman, Kenneth O Stanley, and Jeff Clune. Go-explore: a
new approach for hard-exploration problems. arXiv preprint arXiv:1901.10995, 2019.

[16] Abhishek Das, Théophile Gervet, Joshua Romoff, Dhruv Batra, Devi Parikh, Michael Rab-
bat, and Joelle Pineau. Tarmac: Targeted multi-agent communication. arXiv preprint
arXiv:1810.11187, 2018.

[17] Yuxi Li. Deep reinforcement learning. arXiv preprint arXiv:1810.06339, 2018.

5

https://blog.openai.com/openai-five/
https://deepmind.com/blog/alphastar-mastering-real-time-strateg
https://deepmind.com/blog/alphastar-mastering-real-time-strateg
y-game-starcraft-ii

[18] Gabriel Dulac-Arnold, Daniel Mankowitz, and Todd Hester. Challenges of real-world reinforce-
ment learning. arXiv preprint arXiv:1904.12901, 2019.

[19] Nicolas Heess, Jonathan J Hunt, Timothy P Lillicrap, and David Silver. Memory-based control
with recurrent neural networks. arXiv preprint arXiv:1512.04455, 2015.

[20] Nicolas Heess, Gregory Wayne, David Silver, Timothy Lillicrap, Tom Erez, and Yuval Tassa.
Learning continuous control policies by stochastic value gradients. In Advances in Neural Infor-
mation Processing Systems, pages 2944–2952, 2015.

[21] John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-
dimensional continuous control using generalized advantage estimation. arXiv preprint
arXiv:1506.02438, 2015.

[22] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In International Conference on Machine Learning, pages 1889–1897, 2015.

[23] Rein Houthooft, Xi Chen, Yan Duan, John Schulman, Filip De Turck, and Pieter Abbeel. Vime:
Variational information maximizing exploration. In Advances in Neural Information Processing
Systems, pages 1109–1117, 2016.

[24] Shixiang Gu, Timothy Lillicrap, Ilya Sutskever, and Sergey Levine. Continuous deep q-learning
with model-based acceleration. In International Conference on Machine Learning, pages 2829–
2838, 2016.

[25] Yuke Zhu, Roozbeh Mottaghi, Eric Kolve, Joseph J Lim, Abhinav Gupta, Li Fei-Fei, and Ali
Farhadi. Target-driven visual navigation in indoor scenes using deep reinforcement learning.
In 2017 IEEE international conference on robotics and automation (ICRA), pages 3357–3364.
IEEE, 2017.

[26] Karol Hausman, Jost Tobias Springenberg, Ziyu Wang, Nicolas Heess, and Martin Riedmiller.
Learning an embedding space for transferable robot skills. 2018.

[27] Fangyi Zhang, Jürgen Leitner, Michael Milford, Ben Upcroft, and Peter Corke. Towards vision-
based deep reinforcement learning for robotic motion control. arXiv preprint arXiv:1511.03791,
2015.

[28] Ian Lenz, Ross A Knepper, and Ashutosh Saxena. Deepmpc: Learning deep latent features for
model predictive control. In Robotics: Science and Systems. Rome, Italy, 2015.

[29] Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-end training of deep
visuomotor policies. The Journal of Machine Learning Research, 17(1):1334–1373, 2016.

[30] Chelsea Finn, Sergey Levine, and Pieter Abbeel. Guided cost learning: Deep inverse optimal
control via policy optimization. In International Conference on Machine Learning, pages 49–58,
2016.

[31] Ali Yahya, Adrian Li, Mrinal Kalakrishnan, Yevgen Chebotar, and Sergey Levine. Collective
robot reinforcement learning with distributed asynchronous guided policy search. In 2017
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 79–86.
IEEE, 2017.

[32] Sergey Levine, Peter Pastor, Alex Krizhevsky, Julian Ibarz, and Deirdre Quillen. Learning hand-
eye coordination for robotic grasping with deep learning and large-scale data collection. The
International Journal of Robotics Research, 37(4-5):421–436, 2018.

[33] A Rupam Mahmood, Dmytro Korenkevych, Gautham Vasan, William Ma, and James Bergstra.
Benchmarking reinforcement learning algorithms on real-world robots. arXiv preprint
arXiv:1809.07731, 2018.

[34] Dmitry Kalashnikov, Alex Irpan, Peter Pastor, Julian Ibarz, Alexander Herzog, Eric Jang, Deirdre
Quillen, Ethan Holly, Mrinal Kalakrishnan, Vincent Vanhoucke, et al. Qt-opt: Scalable deep
reinforcement learning for vision-based robotic manipulation. arXiv preprint arXiv:1806.10293,
2018.

[35] Andrei A Rusu, Mel Vecerik, Thomas Rothörl, Nicolas Heess, Razvan Pascanu, and Raia Hadsell.
Sim-to-real robot learning from pixels with progressive nets. arXiv preprint arXiv:1610.04286,
2016.

6

[36] Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and Pieter Abbeel.
Domain randomization for transferring deep neural networks from simulation to the real world.
In 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages
23–30. IEEE, 2017.

[37] Marcin Andrychowicz, Bowen Baker, Maciek Chociej, Rafal Jozefowicz, Bob McGrew, Jakub
Pachocki, Arthur Petron, Matthias Plappert, Glenn Powell, Alex Ray, et al. Learning dexterous
in-hand manipulation. arXiv preprint arXiv:1808.00177, 2018.

[38] Yan Duan, Marcin Andrychowicz, Bradly Stadie, OpenAI Jonathan Ho, Jonas Schneider, Ilya
Sutskever, Pieter Abbeel, and Wojciech Zaremba. One-shot imitation learning. In Advances in
neural information processing systems, pages 1087–1098, 2017.

[39] Chelsea Finn, Tianhe Yu, Tianhao Zhang, Pieter Abbeel, and Sergey Levine. One-shot visual
imitation learning via meta-learning. arXiv preprint arXiv:1709.04905, 2017.

[40] Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
reinforcement learning from human preferences. In Advances in Neural Information Processing
Systems, pages 4299–4307, 2017.

[41] Ashvin Nair, Bob McGrew, Marcin Andrychowicz, Wojciech Zaremba, and Pieter Abbeel. Over-
coming exploration in reinforcement learning with demonstrations. In 2018 IEEE International
Conference on Robotics and Automation (ICRA), pages 6292–6299. IEEE, 2018.

[42] Wen Sun, Anirudh Vemula, Byron Boots, and J Andrew Bagnell. Provably efficient imitation
learning from observation alone. arXiv preprint arXiv:1905.10948, 2019.

[43] Abhishek Gupta, Russell Mendonca, YuXuan Liu, Pieter Abbeel, and Sergey Levine. Meta-
reinforcement learning of structured exploration strategies. In Advances in Neural Information
Processing Systems, pages 5302–5311, 2018.

[44] Ignasi Clavera, Jonas Rothfuss, John Schulman, Yasuhiro Fujita, Tamim Asfour, and Pieter
Abbeel. Model-based reinforcement learning via meta-policy optimization. arXiv preprint
arXiv:1809.05214, 2018.

[45] Deepak Pathak, Dhiraj Gandhi, and Abhinav Gupta. Self-supervised exploration via disagree-
ment. arXiv preprint arXiv:1906.04161, 2019.

[46] Himanshu Sahni, Toby Buckley, Pieter Abbeel, and Ilya Kuzovkin. Addressing sample complex-
ity in visual tasks using hindsight experience replay and hallucinatory gans. 2019.

[47] Giulia Vezzani, Abhishek Gupta, Lorenzo Natale, and Pieter Abbeel. Learning latent state repre-
sentation for speeding up exploration. arXiv preprint arXiv:1905.12621, 2019.

[48] Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning envi-
ronment: An evaluation platform for general agents. Journal of Artificial Intelligence Research,
47:253–279, 2013.

[49] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based
control. In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages
5026–5033. IEEE, 2012.

[50] Stanley Kubrick, Arthur Clarke, Keir Dullea, Gary Lockwood, Geoffrey Unsworth, and Ray
Lovejoy. 2001: a space odyssey. 1968.

[51] Husarion. Rosbot pro 2.0. https://husarion.com/manuals/rosbot-manual/, 2019.

[52] Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double
q-learning. In Thirtieth AAAI conference on artificial intelligence, 2016.

[53] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic actor. arXiv preprint
arXiv:1801.01290, 2018.

[54] Charles Beattie, Joel Z Leibo, Denis Teplyashin, Tom Ward, Marcus Wainwright, Heinrich Küt-
tler, Andrew Lefrancq, Simon Green, Víctor Valdés, Amir Sadik, et al. Deepmind lab. arXiv
preprint arXiv:1612.03801, 2016.

7

https://husarion.com/manuals/rosbot-manual/

[55] Michał Kempka, Marek Wydmuch, Grzegorz Runc, Jakub Toczek, and Wojciech Jaśkowski.
Vizdoom: A doom-based ai research platform for visual reinforcement learning. In 2016 IEEE
Conference on Computational Intelligence and Games (CIG), pages 1–8. IEEE, 2016.

[56] Matthew Johnson, Katja Hofmann, Tim Hutton, and David Bignell. The malmo platform for
artificial intelligence experimentation. In IJCAI, pages 4246–4247, 2016.

[57] Manolis Savva*, Abhishek Kadian*, Oleksandr Maksymets*, Yili Zhao, Erik Wijmans, Bha-
vana Jain, Julian Straub, Jia Liu, Vladlen Koltun, Jitendra Malik, Devi Parikh, and Dhruv Batra.
Habitat: A Platform for Embodied AI Research. arXiv preprint arXiv:1904.01201, 2019.

[58] Fei Xia, Amir R Zamir, Zhiyang He, Alexander Sax, Jitendra Malik, and Silvio Savarese. Gibson
env: Real-world perception for embodied agents. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 9068–9079, 2018.

[59] Oleg Klimov and J Schulman. Roboschool, 2017.

[60] OpenAI. Ingredients for robotics research. https://openai.com/blog/
ingredients-for-robotics-research/, 2018.

[61] Iker Zamora, Nestor Gonzalez Lopez, Victor Mayoral Vilches, and Alejandro Hernandez
Cordero. Extending the openai gym for robotics: a toolkit for reinforcement learning using
ros and gazebo. arXiv preprint arXiv:1608.05742, 2016.

[62] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and Vladlen Koltun. Carla:
An open urban driving simulator. arXiv preprint arXiv:1711.03938, 2017.

[63] David V Gealy, Stephen McKinley, Brent Yi, Philipp Wu, Phillip R Downey, Greg Balke, Allan
Zhao, Menglong Guo, Rachel Thomasson, Anthony Sinclair, et al. Quasi-direct drive for low-
cost compliant robotic manipulation. arXiv preprint arXiv:1904.03815, 2019.

[64] Brian Yang, Jesse Zhang, Vitchyr Pong, Sergey Levine, and Dinesh Jayaraman. Replab: A repro-
ducible low-cost arm benchmark platform for robotic learning. arXiv preprint arXiv:1905.07447,
2019.

[65] Ajay Mandlekar, Yuke Zhu, Animesh Garg, Jonathan Booher, Max Spero, Albert Tung, Julian
Gao, John Emmons, Anchit Gupta, Emre Orbay, et al. Roboturk: A crowdsourcing platform for
robotic skill learning through imitation. arXiv preprint arXiv:1811.02790, 2018.

[66] Lilian Weng Maciek Chociej, Peter Welinder. Orrb: Openai remote rendering backend. In eprint
arXiv, 2019.

[67] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang,
and Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

[68] Stephen James, Marc Freese, and Andrew J. Davison. Pyrep: Bringing v-rep to deep robot
learning. arXiv preprint arXiv:1906.11176, 2019.

[69] Adithyavairavan Murali, Tao Chen, Kalyan Vasudev Alwala, Dhiraj Gandhi, Lerrel Pinto,
Saurabh Gupta, and Abhinav Gupta. Pyrobot: An open-source robotics framework for research
and benchmarking. arXiv preprint arXiv:1906.08236, 2019.

[70] Larry D Jackel, Eric Krotkov, Michael Perschbacher, Jim Pippine, and Chad Sullivan. The darpa
lagr program: Goals, challenges, methodology, and phase i results. Journal of Field robotics,
23(11-12):945–973, 2006.

[71] Daniel Pickem, Paul Glotfelter, Li Wang, Mark Mote, Aaron Ames, Eric Feron, and Magnus
Egerstedt. The robotarium: A remotely accessible swarm robotics research testbed. In 2017
IEEE International Conference on Robotics and Automation (ICRA), pages 1699–1706. IEEE,
2017.

[72] Andry Tanoto, Ulf Witkowski, and Ulrich Rückert. Teleworkbench: A teleoperated platform for
multi-robot experiments. In Proceedings of the 3rd International Symposium on Autonomous
Minirobots for Research and Edutainment (AMiRE 2005), pages 49–54. Springer, 2006.

8

https://openai.com/blog/ingredients-for-robotics-research/
https://openai.com/blog/ingredients-for-robotics-research/

Supplementary Materials

A. Related work

Publicly available simulated environments play an important role in the development of RL methods,
providing a common ground for comparing different approaches and allowing progress in the field to
be explicitly tracked. However, they do not allow to bridge the gap between simulation and reality.
Simulated environments address various general aspects of reinforcement learning research such
as control [48], navigation [54, 55, 56, 57], physical interactions [49] and perception [58]. More
domain-specific simulated environments explore such fields as robotics [59, 60, 61] and autonomous
driving [62].

Following the signs of applicability of RL in real-world robotics, RL-oriented hardware kits became
available in the past year to support the development of reproducible RL in robotics research [63, 64].
Mandlekar at al. [65] and Orrb et al. [66] introduce platforms for generating high fidelity robot
interaction data that can be used to pre-train robotic RL agents.

OpenAI Gym [67] has provided an elegant ecosystem and an abstraction layer between the learning
algorithms and the environments. Currently OpenAI gym supports classical control tasks and such
environments as Atari, MuJoCo, Box2D and OpenAI robotics environments based on MuJoCo that
support simulated creatures, Fetch research platform and Shadow Dexterous HandTM. OpenAI Gym
was created to provide a benchmarking platform for RL research by introducing strict naming and
versioning conventions, making it possible to compare the results achieved by different algorithms
and track the progress in the field.

Zamora et al. [61] introduced an interface to integrate the Gazebo robotics simulator with the OpenAI
Gym ecosystem, allowing to extend the set of possible RL environments to any that can be simulated
in Gazebo. In their recent work, James et al. [68] introduced a toolkit for robot learning research
based on V-REP simulator. Another step in this direction is the PyRobot project [69] that provides a
high-level interface for control of different robots via the Robot Operating System (ROS).

Although these tools provide an easy access to a variety of environments with the focus on specific
tasks, all of these publicly accessible environments are still limited to simulation, only tangentially
addressing the challenge of creating intelligent agents in the real physical world. The very few projects
that have provided physical systems for community-driven robotics research are the LAGR [70]
project from DARPA, Georgia Tech’s Robotarium [71] and TeleWorkBench [72] from Bielefeld
University. While being the closest to the concept of OffWorld Gym, the LAGR program has
concluded and is not active anymore. TeleWorkBench and Robotarium did not postulate a specific
task and thus do not serve as a benchmark challenge. Robotarium’s maximum script execution time
of 600 seconds makes it unsuitable for RL research. Moreover, none of the previous systems provided
close integration into modern RL research ecosystem, proposed specific and version-controlled
challenges nor had the same level of public accessibility as OffWorld Gym.

B. Hardware specification

The Husarion Rosbot is equipped with an ASUS Up Board (Quad Core Intel CPU, Ubuntu 16.04)
on-board computer, Orbbec Astra RGBD camera and a CORE2-ROS robot controller. The robot
controller runs the firmware layer and the on-board computer runs the sensor drivers, ROS sensor
packages and robot motion controller ROS package. Since all of the learning happens on the client
workstation, the on-board capabilities of the robot can be kept minimal. An Intel NUC (Core i7, 32
GB RAM, Ubuntu 16.04) computer runs the OffWorld Gym server, the robot mission management
software and the ROS packages that control the environment. An IBM workstation (Intel Xeon, 32
GB RAM, Nvidia Quadro, Ubuntu 16.04) interfaces with the HTC Vive lighthouse setup. It runs the
HTC Vive driver and a ROS package which publishes the robot’s localization data.

9

C. Video links

A Doulbe DQN agent controlling a physical mobile robot in a real environment with discrete control:
https://youtu.be/HDViFqvB3Co

A Soft Actor-Critic achieves intelligent behavior in the continuous variant of the environment:
https://youtu.be/Nbgq6c78yJg

D. Source code

The source code of the library and the examples mentioned in this work are available in the following
GitHub repository: https://github.com/offworld-projects/offworld-gym

10

https://youtu.be/HDViFqvB3Co
https://youtu.be/Nbgq6c78yJg
https://github.com/offworld-projects/offworld-gym

	Introduction
	A Physical Robotic Environment for Reinforcement Learning
	The architecture of the system

	Experimental Validation

