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Abstract

Success stories of applied machine learning can be traced back to the datasets and
environments that were put forward as challenges for the community. The challenge
that the community sets as a benchmark is usually the challenge that the community
eventually solves. The ultimate challenge of reinforcement learning research is to
train real agents to operate in the real environment, but there is no common real-
world benchmark to track progress of RL on physical robotic systems. To address
this issue we have created OffWorld Gym – a collection of real-world environments
for reinforcement learning in robotics with free public remote access. In this work
we introduce the system and present experimental results that demonstrate the
feasibility of learning on a real robotic system. We train a mobile robot end-to-end
to solve simple navigation task relying solely on camera input and without the
access to location information. Close integration into existing ecosystem allows the
community to start using OffWorld Gym without any prior experience in robotics
and takes away the burden of managing a physical robotics system, abstracting it
under a familiar API. To start training, visit https://gym.offworld.ai.

1 Introduction

Reinforcement learning [1] offers a strong framework to approach machine learning problems that can
be formulated in terms of agents operating in environments and receiving rewards. Coupled with the
representational power and capacity of deep neural networks [2], this framework has enabled artificial
agents to achieve superhuman performance in Atari games [3], Go [4], and real time strategy games
such as Dota 2 [5] and StarCraft II [6]. Deep reinforcement learning has been successfully applied to
simulated environments, demonstrating the ability to solve control problems in discrete [7, 8, 9] and
continuous [10, 11] action spaces, perform long-term planning [12, 13], use memory [14], explore
environments efficiently [15], and even learn to communicate with other agents [16]. These and
many other capabilities proven by deep reinforcement learning (DRL) methods [17] hold an inspiring
promise of the applicability of DRL to real world tasks, particularly in the field of robotics.

Despite the fact that many consider operations in real world settings to be the ultimate challenge
for reinforcement learning research [18], the search for solutions to that challenge is being carried
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Figure 1: The top row shows the real (left) and the simulated (right) instances of the
MonolithDiscrete environment. The users have same access to both via the same API inter-
face, allowing for a seamless transition between a simulated and a real versions of an environment.
The bottom row shows RGB and depth inputs in both instances from the robot’s perspective.

out predominantly in simulated environments [19, 20, 21, 22, 11, 23, 24, 8, 25, 26]. This focus on
simulated environments as opposed to physical ones can be attributed to the high difficulty of training
in real world environments. High sample complexity of modern DRL methods makes collecting a
sufficient amount of observations on a real robotic system both time consuming and challenging from
a maintenance standpoint. As a result, the training of real world agents has been approached in a
variety of ways, both directly [27, 28, 29, 30, 31, 32, 33, 34] and using simulation-to-real transfer
learning to minimize experience needed in a real setting [35, 36, 37]. Recent works on imitation
learning [30, 38, 39, 40, 41, 42] and reduction of sample complexity [43, 44, 45, 46, 47] also provide
a path towards making training in real feasible.

From the previous major successes of machine learning, we see that the goal the community sets
as a benchmark is usually the goal that the community eventually solves. Thus to solve the hard
problems in RL for the real world, the RL community must add real-world environments to their set
of benchmarks. Adding a common physical benchmark environment to the set of canonical reference
tasks such as Atari games [48] and MuJoCo creatures [49] would enable future research to take into
account, and hopefully accelerate, the applicability of RL methods to real world robotics.

2 A Physical Robotic Environment for Reinforcement Learning

In this work, we present four real-world, publicly-accessible, remote-operated robotics RL environ-
ments from the OffWorld Gym framework1, consisting of two tasks in both discrete and continuous
control formulations. These environments conform to the OpenAI gym API while remote-controlling
a real robot maintained by the authors and address general robotics challenges such as locomotion,
navigation, planning, and obstacle avoidance. In each task, the robot must reach a visual beacon
while relying solely on visual input. Simulated variants of these environments are also provided. For
an overview of similar systems please see the “Related work" section of supplementary materials.

The first pair of environments features a navigation task in a walled enclosure (3× 4× 2 meters) in
which a wheeled robot has to traverse an uneven Moon-like terrain to reach an alluring visual beacon
introduced by Kubrick et al. [50]. The robot receives 320× 240 RGBD camera input and nothing
else. The environment control server tracks the robot location using an HTC ViveTM tracker and two

1A video of an agent controlling the robot in a real environment: https://youtu.be/HDViFqvB3Co
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Figure 2: The real environment with obsta-
cles and a sparse reward for reaching the
monolith. An agent has to solve visual ob-
stacle avoidance to complete the task.

Figure 3: Object tracking for the environment con-
trol system. The two lighthouse components track
robot’s location. The monolith is installed in the mid-
dle of the world coordinate frame.

base stations (Figure 3) but this information is not available to the learning agent and is only used
internally by the environment control script to calculate rewards, reset the environment and achieve
new initial locations at the start of each episode.

The MonolithDiscreteReal environment has a discrete action space with four basic actions: left,
right, forward, backward, each applying a fixed velocity to the robot with a 2-second step duration.
The continuous action space variant, MonolithContinuousReal provides smooth controls to the
linear and angular velocities of the robot. A sparse reward of +1.0 is assigned when the robot
(Husarion Rosbot [51], dimensions 20.0× 23.5× 22.0 cm) approaches the monolith within a radius
of 40.0 cm. The environment is reset upon successful completion of the task, reaching the limit of
100 steps or approaching the boundary of the environment. After each reset, the robot is moved to
a random position and orientation. Figure 1 (left) shows the environment and the input stream that
the agent receives. The second pair of environments currently under development inherits all of the
characteristics of the first one, but is made more challenging by adding obstacles that the robot has to
avoid (see Figure 2). Developing a robust solution to this task would demonstrate the applicability
of reinforcement learning to the problem of visual obstacle avoidance in the absence of a map and
location information.

Figure 4: The diagram of the major components of the system architecture of OffWorld Gym

As we further expand the OffWorld Gym framework’s collection by building additional enclosures
with various robotic tasks, we will cover a wide range of challenges for robotic systems, provide stable
benchmarks, and make a step toward applicability of developed solutions to real world and industrial
applications. OffWorld Inc. is committed to providing long-term free support and maintenance of the
physical environments.
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2.1 The architecture of the system

OffWorld Gym consists of three major parts: (a) a Python library that is running on the client machine,
(b) the server that handles communication, resource management and control of the environment
(reward, episode reset, etc.), (c) the physical enclosure that provides power and network infrastructure,
and (d) the robot itself. Figure 4 gives an overview of the architecture, its components and interactions.
Please see supplementary materials for the details on hardware specification.

The OffWorld Gym library provides the API to access the environments. The client side of the library
forwards RL agent’s actions to the gym server. The server processes the actions and forwards them
to the robot. The robot completes the requested action (movement, position reset, etc) and sends
telemetry back to the action server. The server processes the telemetry and creates the state variable
that is sent back to the client as an observation for the agent. The control logic and the learning
process are executed on user’s workstation and the user is thus free to explore any algorithmic
solutions and make use of any amount of computational resources available at their disposal.

3 Experimental Validation

The purpose of our experimental work is threefold: to demonstrate the soundness of the system and
feasibility of learning, provide the first set of benchmark results for modern RL algorithms, and to
empirically estimate the sample complexity of learning a visual navigation task end-to-end on a real
robot from camera inputs directly to actions.

We trained Double DQN [52] and Soft Actor-Critic (SAC) [53] agents in the discrete action space
variant of MonolithReal environment and a SAC agent in the continuous variant of the same
environment. Figure 5 shows the learning curves for all three experiments.

Real environment, discrete action space, Double DQN Real environment, continuous action space, Soft Actor CriticReal environment, discrete action space, Soft Actor Critica. c.b.

Figure 5: Learning curves in discrete and continuous variants of the environment. a. Double DQN
trained end-to-end with discrete actions space: https://youtu.be/HDViFqvB3Co b. Soft Actor-
Critic solves the discrete action space variant of the environment. c. SAC achieves intelligent behavior
in the continuous variant of the environment: https://youtu.be/Nbgq6c78yJg.

The Double DQN agent’s neural network architecture consisted of a 320× 240 visual (depth channel
only) input, three convolutional layers each with four 5× 5 filters and max pooling, followed by two
fully connected layers of size 16. Leaky ReLU activations were used. The network has 3381 trainable
parameters. The Adam optimizer was used with a learning rate of 0.001 and a batch size of 32. The
circular replay buffer was of size 25, 000, and experience was gathered in an epsilon-greedy fashion,
where epsilon was linearly annealed from 0.9 to 0.1 over the first 40, 000 steps. The discount factor
was 0.95.

The SAC agent’s neural network architecture has 84× 84 visual (depth channel only) input, followed
by three convolutional layers with 16, 32, and 64 filters of sizes 8× 8, 4× 4, and 1× 1, respectively.
This was followed by two fully connected layers of size 64. ReLU activations were used. In total
the network has 757,236 trainable parameters. The Adam optimizer was used with a learning rate of
0.0003 and a batch size of 1024. Updates were performed after every experience step. The circular
replay buffer was of size 500, 000. α was learned to match an entropy target of 0.2 ∗ − log(1/|A|)
for discrete spaces and 0.2 ∗ − dim(A) for continuous spaces. The discount factor was 0.99.

The results confirm the overall soundness of the proposed system and demonstrate feasibility of
learning. We count on community involvement to evaluate other existing algorithms, explore different
architectures and methods in order to identify the state of the art algorithms for the tasks presented in
OffWorld Gym and supplement the experimental evaluation of newly proposed methods with a set of
challenge in the real physical world.
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Supplementary Materials

A. Related work

Publicly available simulated environments play an important role in the development of RL methods,
providing a common ground for comparing different approaches and allowing progress in the field to
be explicitly tracked. However, they do not allow to bridge the gap between simulation and reality.
Simulated environments address various general aspects of reinforcement learning research such
as control [48], navigation [54, 55, 56, 57], physical interactions [49] and perception [58]. More
domain-specific simulated environments explore such fields as robotics [59, 60, 61] and autonomous
driving [62].

Following the signs of applicability of RL in real-world robotics, RL-oriented hardware kits became
available in the past year to support the development of reproducible RL in robotics research [63, 64].
Mandlekar at al. [65] and Orrb et al. [66] introduce platforms for generating high fidelity robot
interaction data that can be used to pre-train robotic RL agents.

OpenAI Gym [67] has provided an elegant ecosystem and an abstraction layer between the learning
algorithms and the environments. Currently OpenAI gym supports classical control tasks and such
environments as Atari, MuJoCo, Box2D and OpenAI robotics environments based on MuJoCo that
support simulated creatures, Fetch research platform and Shadow Dexterous HandTM. OpenAI Gym
was created to provide a benchmarking platform for RL research by introducing strict naming and
versioning conventions, making it possible to compare the results achieved by different algorithms
and track the progress in the field.

Zamora et al. [61] introduced an interface to integrate the Gazebo robotics simulator with the OpenAI
Gym ecosystem, allowing to extend the set of possible RL environments to any that can be simulated
in Gazebo. In their recent work, James et al. [68] introduced a toolkit for robot learning research
based on V-REP simulator. Another step in this direction is the PyRobot project [69] that provides a
high-level interface for control of different robots via the Robot Operating System (ROS).

Although these tools provide an easy access to a variety of environments with the focus on specific
tasks, all of these publicly accessible environments are still limited to simulation, only tangentially
addressing the challenge of creating intelligent agents in the real physical world. The very few projects
that have provided physical systems for community-driven robotics research are the LAGR [70]
project from DARPA, Georgia Tech’s Robotarium [71] and TeleWorkBench [72] from Bielefeld
University. While being the closest to the concept of OffWorld Gym, the LAGR program has
concluded and is not active anymore. TeleWorkBench and Robotarium did not postulate a specific
task and thus do not serve as a benchmark challenge. Robotarium’s maximum script execution time
of 600 seconds makes it unsuitable for RL research. Moreover, none of the previous systems provided
close integration into modern RL research ecosystem, proposed specific and version-controlled
challenges nor had the same level of public accessibility as OffWorld Gym.

B. Hardware specification

The Husarion Rosbot is equipped with an ASUS Up Board (Quad Core Intel CPU, Ubuntu 16.04)
on-board computer, Orbbec Astra RGBD camera and a CORE2-ROS robot controller. The robot
controller runs the firmware layer and the on-board computer runs the sensor drivers, ROS sensor
packages and robot motion controller ROS package. Since all of the learning happens on the client
workstation, the on-board capabilities of the robot can be kept minimal. An Intel NUC (Core i7, 32
GB RAM, Ubuntu 16.04) computer runs the OffWorld Gym server, the robot mission management
software and the ROS packages that control the environment. An IBM workstation (Intel Xeon, 32
GB RAM, Nvidia Quadro, Ubuntu 16.04) interfaces with the HTC Vive lighthouse setup. It runs the
HTC Vive driver and a ROS package which publishes the robot’s localization data.
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C. Video links

A Doulbe DQN agent controlling a physical mobile robot in a real environment with discrete control:
https://youtu.be/HDViFqvB3Co

A Soft Actor-Critic achieves intelligent behavior in the continuous variant of the environment:
https://youtu.be/Nbgq6c78yJg

D. Source code

The source code of the library and the examples mentioned in this work are available in the following
GitHub repository: https://github.com/offworld-projects/offworld-gym
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