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Abstract

Robot learning holds the promise of learning policies that generalize broadly.
However, such generalization requires sufficiently diverse datasets of the task of
interest, which can be prohibitively expensive to collect. In this paper, we ask: what
would it take to enable practical data reuse in robotics for end-to-end skill learning?
We hypothesize that the key is to use datasets with multiple tasks and multiple
domains, such that a new user that wants to train their robot to perform a new task
in a new domain can include this dataset in their training process and benefit from
cross-task and cross-domain generalization. To evaluate this hypothesis, we collect
a large multi-domain and multi-task dataset, with 7,200 demonstrations constituting
71 tasks across 10 environments, and empirically study how this data can improve
the learning of new tasks in new environments. We find that jointly training with
the proposed dataset and 50 demonstrations of a never-before-seen task in a new
domain on average leads to a 2x improvement in success rate compared to using
target domain data alone. We also find that data for only a few tasks in a new
domain can bridge the domain gap and make it possible for a robot to perform a
variety of prior tasks that were only seen in other domains.

1 Introduction

Toy Sink 2

Toy kitchen 1: Flip pot upright

Toy sink 1: Put spoon into pan

Toy sink 2: Put carrot on plate Toy sink 3: Put lid on pot

Toy kitchen 2: Put potato into pot

Toy kitchen 3: Turn faucet to the right

Real Kitchen 1: Wipe plate with sponge

Toy kitchen 4: Put banana in pot

Toy sink 4: Put cup in drying rack Toy sink 5: Put carrot on plate

Figure 1: Illustration of our bridge dataset. The dataset includes demon-
strations in 10 environments (4 toy kitchens and 5 toy sinks and 1 real
kitchen), collected using a WidowX250 robot controlled via an Ocu-
lus Quest2 VR device, and consists of 7200 demonstrations. The red
arrows indicate the desired movement of the target object.

The prevailing paradigm of robot learning is to
repeat data collection and policy training from
scratch for every new task and environment.
Learning policies in isolation not only increases
the costs of data collection, but also limits the
policy’s scope of generalization.

In other fields, such as computer vision [14] and
natural language processing (NLP) [3], utilizing
large, diverse datasets has shown considerable
success in enabling generalization to new prob-
lems or domains with a small amount of data
(e.g., via pretraining and finetuning). However,
in robotics, datasets are usually collected with
a specific robotic platform and domain in mind,
typically by the same researcher who intends to
use that dataset. What would it take to make datasets reusable in robotics in the same way as large
supervised datasets are reused (e.g., ImageNet [2])? Here we define a domain as the physical space a
robot is situated in such as the type of (toy)kitchen, which implies not only different backgrounds but
also different lighting conditions. The aim of our paper is to investigate the degree to which such a
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multi-task and multi-domain dataset, which we refer to as a bridge dataset, can enable a new robot in
a new domain (which was not seen in the bridge data) to more effectively generalize when learning a
new task (which was also not seen in the bridge data), as well as to transfer tasks from the bridge
data to the target domain. We also propose a new dataset that enables this goal in the context of
kitchen-themed tasks with a low-cost robotic arm and is intended to be reused by other researchers.

No existing dataset covers both multiple tasks and multiple domains in a way that is suitable to study
our central hypothesis: can prior data be used to improve the generalization of new tasks in new
domains? We will call this the bridge data hypothesis. We believe this is a critical requirement for
effective data reuse in robotics, where different labs and researchers can all bootstrap from the same
shared datasets. We present our new dataset, and then use it to evaluate the bridge data hypothesis
that is stated above, on three types of transfer scenarios that are outlined in more detail in section 3.

Dataset # Tasks # Trajec. # Domains
DAML [25] 3 2.9k 1
MIME [22] 22 8.2k 1
RoboNet [1] N/A 162k 7
RoboTurk [19, 18] 3 2.1k 1
Vis. Imit. Made [24] 2 2k 50
Ours 71 7.2k 10

Figure 2: Comparison of our dataset and prior works. Our dataset has
by far the most tasks, and is the only dataset with more than 2 tasks
that has many domains. This is critical for evaluating the bridge data
hypothesis.

The main contributions of our work consist of an
empirical evaluation of the bridge data hypoth-
esis and a practical example of a bridge dataset
with 7,200 demonstrations for 71 tasks in 10 en-
vironments, which we have released publicly on
the project website.3 Our results suggest that
accumulating and reusing diverse multi-task and
multi-domain datasets, at least when all data is
collected with the same type of robot, may make
it possible for researchers to endow robots with
generalizable skills using only a modest amount
of in-domain data for their desired task.

section 10 will explain our low cost data collection system in more detail.

2 Related Work

Toy Kitchen 1

Toy Sink 1

Toy Sink 2

Bridge-Data

Joint 
Bridge-Target 

ImitationToy  Kitchen 
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Rollout in Target Domain for Turn Lever Task

Turn Lever Task

Target Domain Data: Toy Sink 3

Figure 3: Scenario (1): transfer with matching behaviors. In this
setting, bridge data is used to improve the performance and generaliza-
tion of tasks in the target domain for which the user has collected some
amount of data. These tasks must also be present in the bridge data. In
this example, the user demonstrates the “turn lever,” “squash into pot,”
and “flip cup” tasks in the target domain, and these tasks are also present
in several domains in the bridge data. After including the bridge data in
training, the performance and generalization of these tasks in the target
is significantly higher.

While most prior work on deep visuomotor
learning trains a single task in a single domain
[8, 4, 11, 25, 17, 21, 9, 23, 27], our goal is not
to develop better learning methods, but rather to
illustrate how generic multi-domain, multi-task
datasets can be used with existing algorithms to
boost the generalization of new tasks in new do-
mains. Prior work on multi-task reinforcement
learning [13] has shown that data from other
tasks can boost generalization of new tasks, how-
ever this study is carried out in a single domain.

Existing robot learning datasets do not exhibit
the right properties for boosting the generaliza-
tion of new tasks in new domains or zero-shot
transferring skills from the prior dataset to a tar-
get domain. We provide an overview of the most
related datasets in Figure 2. Most existing robot
datasets, such as MIME [22], DAML [25], Robo-
Turk [19, 18], and many others [20, 6, 16, 12, 5, 26, 13] only feature a single domain, making them
difficult to use for boosting the generalization in other domains. Merging multiple existing datasets
into one multi-domain dataset is difficult due to inconsistencies in data collection protocols, time
discretization, robot morphologies, and sensors.

3 Boosting Generalization via Bridge Datasets

We study how a bridge dataset can be used to boost three types of generalization, though other modes
may also be feasible:

3https://sites.google.com/view/bridgedata
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(1) Transfer with matching behaviors, where the user collects some small amount of data in their
target domain for tasks that are also present in the bridge data (e.g., around 50 demos per task), and
uses the bridge data to boost the performance and generalization of these tasks. We illustrate this
scenario in Figure 3. This scenario is the most conventional, and resembles domain adaptation in
computer vision, but it is also the most limiting, since it requires the user’s desired tasks to be present
in the bridge data.

Toy Kitchen 1

Toy Sink 1

Toy Sink 2

Target Domain Data: Toy Sink 3

Toy Kitchen 2

Roll out Put sweet potato in pot in Toy Sink3

Put sweet potato in pot

Put sweet 
potato in 
pot not 
included.

Transfer

Joint 
Bridge-Target 

Imitation

Bridge-Data

Figure 4: Scenario (2): zero-shot transfer with target support. In
this setting, the goal is to “import” a task from the bridge data that was
not seen in the target domain. The user provides a few tasks in the target
domain that are used to connect to the bridge data, and then asks the
robot to perform a task that they did not provide, but which was seen in
the bridge data. In this case, the “put sweet potato in pot” task is present
in the toy kitchen 1 domain in the bridge data, but is not demonstrated
by the user in the target domain. After training with user-provided data
for other tasks, the robot is able to perform “put sweet potato in pot” in
the target domain.

(2) Zero-shot transfer with target support,
where the user utilizes data from a few tasks in
their target domain to “import” other tasks that
are present in the bridge data without addition-
ally collecting new demonstrations for them in
the target domain. For example, the bridge data
contains the tasks of putting a sweet potato into
a pot or a pan, the user provides data in their do-
main for putting brushes in pans, and the robot is
then able to both put brushes as well as put sweet
potatoes in pans. We illustrate this scenario in
Figure 4. This scenario increases the repertoires
of skills that are available in the user’s target en-
vironment, simply by including the bridge data,
thus eliminating the need to recollect data for
every task in every target environment.

(3) Boosting generalization of new tasks,
where the user provides a small amount of data
(50 demonstrations in practice) for a new task
that is not present in the bridge data, and then utilizes the bridge data to boost generalization and
performance of this task. This scenario, illustrated in Figure 5, most directly reflects our primary
goals, since it uses the bridge data without requiring either the domains or tasks to match, leveraging
the diversity of the data and structural similarity to boost performance and generalization of entirely
new tasks.

4 Using Bridge Data in Imitation Learning

Bridge-Data

Improved Generalization for “Put Brush in Pan” Task

Target Task (not in Bridge Data)

Joint 
Bridge-Target 

Imitation

Figure 5: Scenario (3): boosting generalization of new tasks. The
user provides some data for a new task that was not seen in the bridge
data, and the bridge data is included in training to boost performance
and generalization for this new task.

As a proof-of-concept to illustrate the utility of
bridge datasets for boosting generalization in
robot learning, we will present experimental re-
sults for an imitation-based approach (please find
details in the appendix) that utilizes this data, al-
though the data could also be used with a variety
of other robotic learning algorithms such as of-
fline RL and model-based planning. While a
variety of transfer learning methods have been
proposed in the literature for combining datasets
from distinct domains, we found that a simple
joint training approach is effective for deriving considerable benefit from bridge data. For each of the
scenarios outlined in Section 3, we take the user-provided demonstrations in the target domain and
combine them with the entire bridge dataset for training. Training details are provided in section 8
and an explanation of the policy architecture is given in section 7 in the appendix.

5 Experimental Results

Our experimental evaluation aims to study how well bridge data can facilitate generalization in
scenarios (1), (2), and (3), as outlined in Section 3. We evaluate generalization on a set of new target
domains with limited target domain data for each of the generalization scenarios, and compare the
performance of learned policies with and without bridge data. Videos of the experiments are included
in the supplementary materials and on the project webpage. Please see the appendix for a description
of our quantitative evaluation metrics.
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Figure 6: Comparisons of joint training with bridge data (blue) and other approaches for each type
of scenario. The black vertical lines on the average success rate bar denote the standard error of the
mean across different tasks for that scenario. Left: Performing joint training on bridge and target
data leads to improved performance, here the task is included both in the bridge and target dataset.
Middle: Using target domain data from other tasks helps transferring tasks from the bridge dataset
to the target domain. Right: Joint training with the bridge data and a target task that is not contained
in the bridge dataset enables significant generalization improvement compared to only training on
the target task alone. Tasks with an asterisk (*) uses objects that are not part of the bridge dataset.

Scenario (1): transfer
with matching behaviors.
Figure 6 (left) shows re-
sults for the transfer learn-
ing with matching behaviors
scenario, where the user pro-
vides some data for a set
of tasks in the target do-
main (which are also present
in the bridge data), and we
evaluate whether including
bridge data during training
improves performance and
generalization. For compar-
ison, we include the perfor-
mance of the policy when
trained only on the target do-
main data, without bridge
data (Target Domain Only),
a baseline that uses only the bridge data without any target domain data (Direct Transfer), as well
as baseline that trains a single-task policy on data in the target domain only (Single Task). As can
be seen in the results, jointly training with the bridge data leads to significant gains in performance
(66% success averaged over tasks) compared to the direct transfer (14% success), target domain only
(28% success) and the single task (18% success) baseline.

Scenario (2): zero-shot transfer with target support. We provide a qualitative example for this
scenario in Figure 7 middle (in the appendix), which shows an experiment where we transfer the “put
carrot on plate" task into the Toy Sink 1 target domain using the bridge data and target domain data
consisting of 10 other tasks. The results, shown in Figure 6 (middle), indicate that the jointly trained
policy which obtains 44% success averaged over tasks indeed attains a very significant increase in
performance over direct transfer (30% success), suggesting that the zero-shot transfer with target
support scenario offers a viable way for users to “import” tasks from the bridge dataset into their
domain.

Scenario (3): boosting generalization of new tasks. We collected data for 10 different unique tasks
in 4 different environments and excluded them from the bridge data to simulate a user collecting
their own unique task in their new target environment. Figure 7 right (in the appendix) illustrates one
of these scenarios, where we collected 50 demonstrations for the “wipe place with sponge" task in
the the real kitchen 1 target domain. Neither data from the target domain nor this task or this object
are present in the bridge data. After jointly training with both bridge and target data we obtain a
significant generalization boost when running the policy in the target domain, compared to a policy
trained on only the single-task target domain data. The results are presented in Figure 6 (right), and
show that training jointly with the bridge data leads to significant improvement on 6 out of 10 tasks
across three evaluation environments, leading to 50% success averaged over tasks, whereas single
task policies attain around 22% success – a 2× improvement in overall performance.

6 Conclusion

We show how a large, diverse bridge dataset can be leveraged to improve generalization in robotic
learning. Our experiments demonstrate that including bridge data when training skills in a new
domain can improve performance across a range of scenarios, both for tasks that are present in the
bridge data and, perhaps surprisingly, entirely new tasks. This means that bridge data may provide
a generic tool to improve generalization in a user’s target domain. In addition, we showed that
bridge data can also function as a tool to import tasks from the prior dataset to a target domain, thus
increasing the repertoires of skills a user has at their disposal in a particular target domain. This
suggests that a large, shared bridge dataset, like the one we have released, could be used by different
robotics researchers to boost the generalization capabilities and the number of available skills of their
imitation-trained policies.
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Figure 7: Examples of successful trajectories performed by the policy jointly trained with prior data and target domain data. Left: put pot in
sink (scenario 1); middle: put carrot on plate (scenario 2); Right: wipe plate with sponge (scenario 3).

7 Policy architecture.

We use task-conditioned behavioral cloning (BC) with an additional task-id input to the policy, which
is used to distinguish tasks during training and testing. In some cases, a task cannot be uniquely
determined by only observing the input image, and a one-hot vector representing the task will solve
this issue. The images are first fed into a 34-layer ResNet [10] and the resulting feature maps are
passed through a spatial softmax [7, 15], which extracts a set of spatial positions of the relevant
features. The spatial features are then concatenated with the one-hot task-id vector, and are fed
into 3 layers of fully-connected networks by which the final action prediction is produced. During
training, for a batch of training data containing tuples of task ids, images, and ground-truth actions,
the network is trained by minimizing the standard `2-error between the ground-truth actions and the
predicted actions given by the policy provided the task id and the image observation as the input.

8 Training details.

Since the amount of target domain data is usually significantly less than the amount of bridge data,
we rebalance the two datasets during training. In the matching behaviors and zero-shot transfer with
target support scenarios, the ratio between the number of trajectories in the bridge and target data
is roughly 10:1, and we rebalance the data such that 70% of the dataset is bridge data and 30% is
target domain data. In the “boosting generalization of new tasks" scenario the imbalance is more
severe, roughly 60:1, and so we rebalance such that 90% of the dataset is bridge data and 10% is
target domain data. Lower rebalancing ratios of bridge data and target domain data tend to produce
overfitting when the amount of target domain data is as low as 50 demonstrations.

Task

Tar.

Env

Joint

Train

Single

Task

Potential reason for

no gain with bridge data

turn faucet lever (1) tk2 0% 0% The faucet in tk2 has very different
appearance from the other faucets

Pickup pan from stove (2) ts1 0% N/A Not enough target domain data and prior data for this task
Put spoon into pot (2) tk2 0% N/A Not enough target domain data and prior data for this task
flip orange pot upright (3) tk2 50% 60% There is no orange pot in prior dataset,

only metal pots in prior dataset
open box flaps (3) tk2 10% 10% Boxes and pushing motions do not occur in prior data
take lid off pot (3) ts3 60% 60% Only 100 demos involving lids in prior dataset.
pick up screw driver (3) toolchest 0% 0% The toolchest and screwdrivers are

visually very different from prior data
put pot or pan in sink (1) tk2 90% 50%
put carrot on plate (2) ts1 40% N/A
Wipe plate w/ sponge (3) k1 70% N/A
put pear in bowl (3) tk2 50% 10%
put brush in pot (3) ts3 90% 0%
put detergent dry rack (3) ts3 80% 10%
lift bowl (3) tk2 70% 50%

Figure 8: Comparison of scenarios where usage of the bridge data helps performance and where it does not. Scenarios where usage of bridge
data does not help are marked in red font. The type of transfer setting is denoted by the number in brackets after the task description.

9 Quantitative metrics.

All quantitative evaluations use 10 trials per task,varying object positions and distractors on every
trial and varying the position of the robot relative to the environment every 5 trials. This ensures
that all test configurations are unique and different from any condition seen in training, providing
a measurement of generalization performance for the policy. When the experiments in toy kitchen
1-3 and toy sink 1-3 were conducted, the bridge dataset only comprised 4700 trajectories. Other
experiments use the full dataset with 7200 trajectories total.
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Oculus Quest 2 
Headset

WidowX 250s
(6dof)

1 Camera fixed
relative to robot

Oculus Quest 2 
Controller

4 Cameras on
flexible rods

Figure 9: Demonstration data collection setup using VR Headset. The scene is captured by 5 cameras simultaneously. While one of the
cameras is fixed, the others are mounted on flexible rods.

10 Robotic system overview

Since our dataset is likely the most useful for users with the same or similar type of robot, we chose
to use a low-cost and widely available robot, a 6-dof WidowX250s (US$2900), which many other
users of our dataset are likely to be able to obtain. The total cost of the setup is less than US$3600
(excluding the computer). To collect demonstrations, we use an Oculus Quest headset, where we put
the headset on a table as illustrated in Figure 9 next to the robot and track the user’s handset while
applying the user’s motions to the robot end-effector via inverse kinematics. We capture images from
3 to 5 cameras concurrently, using standard webcams as well as Intel RealSense depth cameras.
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11 Task List

task number entity domain task number of demos
1 berkeley realkitchen1_counter put_spoon_on_plate 16
2 berkeley realkitchen1_counter pick_up_sponge_and_wipe_plate 50
3 berkeley toysink2_bww flip_pot_upright_which_is_in_sink 50
4 berkeley toysink2_bww put_cup_from_counter_or_drying_rack_into_sink 50
5 berkeley toysink2_bww put_carrot_on_plate 54
6 berkeley toysink2_bww put_knife_on_cutting_board 50
7 berkeley toysink2_bww turn_lever_vertical_to-front 50
8 berkeley toysink2_bww put_spoon_in_pot 50
9 berkeley toysink2_bww put_eggplant_into_pot_or_pan 50
10 berkeley tool_chest pick_up_violet_Allen_key 50
11 berkeley tool_chest pick_up_blue_pen_and_put_into_drawer 50
12 berkeley tool_chest pick_up_closest_rainbow_Allen_key_set 5
13 berkeley tool_chest pick_up_scissors_and_put_into_drawer 50
14 berkeley tool_chest pick_up_bit_holder 50
15 berkeley tool_chest pick_up_red_srewdriver 50
16 berkeley tool_chest pick_up_glue_and_put_into_drawer 35
17 berkeley tool_chest pick_up_box_cutter_and_put_into_drawer 50
18 berkeley toykitchen4 put_detergent_in_sink 50
19 berkeley toykitchen4 put_carrot_in_bowl 33
20 berkeley toykitchen4 put_lid_on_pot_or_pan 50
21 berkeley toykitchen4 put_pear_on_plate 50
22 berkeley toykitchen4 put_banana_in_pot_or_pan 50
23 berkeley toykitchen4 put_sushi_in_pot_or_pan 50
24 berkeley toysink1_room8052 put_spoon_into_pan 50
25 berkeley toysink1_room8052 flip_pot_upright_which_is_in_sink 50
26 berkeley toysink1_room8052 put_pan_from_drying_rack_into_sink 50
27 berkeley toysink1_room8052 put_eggplant_into_pan 51
28 berkeley toysink1_room8052 put_pan_on_stove_from_sink 50
29 berkeley toysink1_room8052 put_pan_from_sink_into_drying_rack 50
30 berkeley toysink1_room8052 put_pan_from_stove_to_sink 50
31 berkeley toysink3_bww put_knife_in_pot_or_pan 50
32 berkeley toysink3_bww put_cup_into_pot_or_pan 50
33 berkeley toysink3_bww put_lid_on_pot_or_pan 50
34 berkeley toysink3_bww put_green_squash_into_pot_or_pan 50
35 berkeley toysink3_bww turn_lever_vertical_to_front 50
36 berkeley toysink3_bww put_cup_from_anywhere_into_sink 50
37 berkeley toysink3_bww flip_cup_upright 50
38 berkeley toysink3_bww put_brush_into_pot_or_pan 50
39 berkeley toysink3_bww put_pot_or_pan_from_sink_into_drying_rack 50
40 berkeley toysink3_bww put_detergent_from_sink_into_drying_rack 50
41 berkeley toysink3_bww take_lid_off_pot_or_pan 50
42 berkeley toykitchen2_room8052 put_corn_on_plate 50
43 berkeley toykitchen2_room8052 put_sweet_potato_in_pot 50
44 berkeley toykitchen2_room8052 put_lemon_on_plate 50
45 berkeley toykitchen2_room8052 flip_orange_pot_upright_in_sink 50
46 berkeley toykitchen2_room8052 flip_salt_upright 6
47 berkeley toykitchen2_room8052 put_knife_on_cutting_board 15
48 berkeley toykitchen2_room8052 put_sushi_on_plate 50
49 berkeley toykitchen2_room8052 put_pot_or_pan_on_stove 49
50 berkeley toykitchen2_room8052 turn_lever_vertical_to_front 50
51 berkeley toykitchen2_room8052 put_potato_in_pot_or_pan 50
52 berkeley toykitchen2_room8052 put_spatula_in_pan 50
53 berkeley toykitchen2_room8052 put_strawberry_in_pot 50
54 berkeley toykitchen2_room8052 put_carrot_in_pot_or_pan 50
55 berkeley toykitchen2_room8052 put_pear_in_bowl 50
56 berkeley toykitchen2_room8052 put_potato_on_plate 99
57 berkeley toykitchen2_room8052 put_can_in_pot 50
58 berkeley toykitchen2_room8052 lift_bowl 50
59 berkeley toykitchen2_room8052 put_pot_or_pan_in_sink 51
60 berkeley toykitchen2 open_small4fbox_flaps 53
61 berkeley toykitchen2 open_brown1fbox_flap 50
62 berkeley toykitchen2 close_small4fbox_flaps 25
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63 berkeley toykitchen2 open_white1fbox_flap 50
64 berkeley toykitchen2 close_white1fbox_flap 50
65 berkeley toykitchen2 close_brown1fbox_flap 51
66 berkeley toykitchen1 lever_vertical_to_front 169
67 berkeley toykitchen1 put_corn_into_bowl 50
68 berkeley toykitchen1 put_sweet_potato_in_pan_which_is_on_stove_distractors 26
69 berkeley toykitchen1 put_sweet_potato_in_pan_which_is_on_stove 25
70 berkeley toykitchen1 put_detergent_in_sink 50
71 berkeley toykitchen1 pick_up_pot_from_sink_distractors 100
72 berkeley toykitchen1 put_pepper_in_pan 50
73 berkeley toykitchen1 put_broccoli_in_pot_cardboardfence 130
74 berkeley toykitchen1 put_eggplant_on_plate 50
75 berkeley toykitchen1 take_sushi_out_of_pan 51
76 berkeley toykitchen1 put_pepper_in_pot_or_pan 100
77 berkeley toykitchen1 take_carrot_off_plate 50
78 berkeley toykitchen1 take_broccoli_out_of_pan 50
79 berkeley toykitchen1 put_red_bottle_in_sink 50
80 berkeley toykitchen1 open_large4fbox_flaps 51
81 berkeley toykitchen1 turn_faucet_front_to_left 117
82 berkeley toykitchen1 put_lid_on_pot_or_pan 100
83 berkeley toykitchen1 pick_up_pan_from_stove_distractors 80
84 berkeley toykitchen1 put_carrot_on_plate 100
85 berkeley toykitchen1 put_corn_in_pan_which-is_on_stove_distractors 26
86 berkeley toykitchen1 put_pan_in_sink 51
87 berkeley toykitchen1 close_small4fbox_flaps 27
88 berkeley toykitchen1 put_big_spoon_from_basket_to_tray 54
89 berkeley toykitchen1 take_can_out_of_pan 2
90 berkeley toykitchen1 put_knife_on_cutting_board 50
91 berkeley toykitchen1 put_carrot_on_cutting_board 45
92 berkeley toykitchen1 put_corn_in_pot_which_is_in_sink_distractors 100
93 berkeley toykitchen1 close_large4fbox_flaps 51
94 berkeley toykitchen1 put_small_spoon_from_basket_to_tray 54
95 berkeley toykitchen1 put_sushi_on_plate 50
96 berkeley toykitchen1 put_broccoli_in_bowl 25
97 berkeley toykitchen1 put_sweet_potato_in_pot_which_is_in_sink_distractors 100
98 berkeley toykitchen1 twist_knob_start_vertical_clockwise90 9
99 berkeley toykitchen1 put_eggplant_in_pot_or_pan 100
100 berkeley toykitchen1 turn_lever_vertical_to_front_distractors 330
101 berkeley toykitchen1 put_pot_on_stove_which_is_near_stove_distractors 102
102 berkeley toykitchen1 put_pot_in_sink 50
103 berkeley toykitchen1 put_lid_on_stove 51
104 berkeley toykitchen1 pick_up_bowl_and_put_in_small4fbox 50
105 berkeley toykitchen1 put_green_squash_in_pot_or_pan 46
106 berkeley toykitchen1 put_broccoli_in_pot_or_pan 75
107 berkeley toykitchen1 put_banana_on_plate 50
108 berkeley toykitchen1 put_pear_in_bowl 50
109 berkeley toykitchen1 flip_pot_upright_in_sink_distractors 306
110 berkeley toykitchen1 put_corn_in_pan_which_is_on_stove_distractors 131
111 berkeley toykitchen1 take_lid_off_pot_or_pan 50
112 berkeley toykitchen1 put_fork_from_basket_to_tray 58
113 berkeley realkitchen1_dishwasher pick_up_any_cup 50
114 berkeley realkitchen1_dishwasher pick_up_glass_cup 61
115 berkeley realkitchen1_dishwasher pick_up_green_mug 49
116 upenn toykitchen3 turn_faucet_right_55 55
117 upenn toykitchen3 pick_up_pot_50 50
118 upenn toykitchen3 turn_faucet_left_56 56
119 upenn toysink5 turn_lever_vertical_to_front 106
120 upenn toysink5 put_cup_from_anywhere_into_sink 104
121 upenn toysink5 flip_cup_upright 111
122 upenn toysink4 put_cup_from_sink_to_drying_rack 25
123 upenn toysink4 move_faucet_front_to_left 9
124 upenn toysink4 put_cup_from_drying_rack_to_sink 16
125 upenn toysink4 put_eggplant_on_plate 25
126 upenn toysink4 put_carrot_on_plate 25
127 upenn toysink4 put_cup_from_counter_to_sink 101
128 upenn toysink4 turn_faucet_front_to_right 25
total demos 7453
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