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Abstract

Curiosity-based reward schemes can present powerful exploration mechanisms
which facilitate the discovery of solutions for complex, sparse or long-horizon
tasks. However, as the agent learns to reach previously unexplored spaces and the
objective adapts to reward new areas, many behaviours emerge only to disappear
due to being overwritten by the constantly shifting objective. We argue that
merely using curiosity for fast environment exploration or as a bonus reward for a
specific task does not harness the full potential of this technique and misses useful
skills. Instead, we propose to shift the focus towards retaining the behaviours
which emerge during curiosity-based learning. We posit that these self-discovered
behaviours serve as valuable skills in an agent’s repertoire to solve related tasks.
Our experiments demonstrate the continuous shift in behaviour throughout training
and the benefits of a simple policy snapshot method to reuse discovered behaviour
for transfer tasks.

1 Introduction

Intrinsic motivation [15, 11, 12, 2, 16] can be a powerful concept to endow an agent with an automated
mechanism to continuously explore its environment in the absence of task information. One common
way to implement intrinsic motivation is to train a predictive model alongside the agent’s policy
and use the model’s prediction error as a reward signal for the agent encouraging the exploration of
previously unfamiliar transitions in the environment - a method also known as curiosity learning [13].
Curiosity-esque reward schemes have been used in different ways to facilitate exploration in sparse
tasks [9, 4] or pre-train policy networks before fine-tuning them on difficult downstream tasks [17].
In environments where the main task objective is highly correlated with thorough exploration,
curiosity-based approaches have also been shown to solve the main task without any additional
reward signal [3].

However, in more realistic environments with multiple possible tasks – e.g. in manipulation scenarios
where objects could be interacted with or re-arranged in different ways – not only the final behaviour
of a curiousity experiment might be of interest, but intermediate behaviours can correlate with
solutions to different tasks. Naturally, the constantly changing curiosity objective leads to the
emergence of diverse behaviours during training – much akin to the learning process of infants which
develop useful skills by playing [6]. Yet, only a fraction of this diversity is ultimately retained in the
final policy. Working towards retaining and leveraging emergent behaviour can help to change our
perspective of curiosity-based exploration from a tool for task-driven reinforcement learning to a rich
continual learning setting [7] in itself which constantly discovers novel behaviour to be leveraged by
downstream applications.
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Figure 1: Two example timelines depicting the emergence and disappearance of behaviour while
pursuing a constantly changing curiosity objective on a 9-DoF JACO arm (top) and on a 20-DoF OP3
humanoid robot (bottom). Each timeline represents the evolution of behaviour from a single random
seed on a single simulated actor. The corresponding line plots represent evaluations which have been
performed during the curiosity experiment to gauge the policy’s performance in certain, hand-defined
tasks like lifting a specific object or walking in a particular direction. A detailed description of
the emergent behaviour in this experiment and the corresponding quantitative results is provided
in Appendix C.

The application of self-induced curricula of skills holds a tantalising prospect for an agent’s ability to
solve broad sets of long-horizon tasks when it is able to draw upon potentially useful skills. Related
work focusing on skill diversity [5, 19, 18] shows that skill spaces induced by diverse self-discovered
behaviours can be leveraged for task planning. Other recent works [14, 8, 21] have studied the
influence of specificly designed auxiliary tasks on the learning success of complex manipulation
policies. A curiosity-based approach could reduce the effort of designing a curriculum of tasks and
reward functions by providing a set of self-discovered skills which can be leveraged for efficient
exploration and compositional task transfer.

In this paper, we make the following contributions: We introduce SelMo, an off-policy realisation
of curiosity-based exploration and apply it to two robotic manipulation and locomotion domains in
simulation. We demonstrate that our model yields meaningful and diverse emergent behaviour in
complex 3D environments. Finally, we emphasise that useful behaviours emerge just to disappear later
during training and propose to extend the focus of curiosity-based learning towards the retention of
intermediate behaviours which can serve as a valuable skill set for compositional learning methods.
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Figure 2: An overview over the SELMO system architecture. The agent collects trajectories
τk, τk+1, . . . in the environment using its current policy πi and stores it in a model replay buffer
DM. When DM is full, trajectories are replaced with a uniform removal strategy. The dynamics
model fdyn samples uniformly from this buffer and updates its parameters for forward prediction
using stochastic gradient descent (SGD). The sampled trajectories τ j , τ j+1, . . . are then assigned
a curiosity reward rj , rj+1, . . . scaled by their respective prediction error under the current f (j)dyn.
The labeled trajectories are passed on to the policy replay buffer Dπ which runs a FIFO removal
strategy. Maximum a posteriori policy optimisation (MPO) [1] is used to fit Q-function and policy π
based on uniformly drawn samples from the policy replay. The resulting policy πi+1 is then synced
back into the actor. Note that both model and policy learning is executed in independent loops.

2 Method

In this section we present SELMO – a self-motivated exploration method which optimises a curiosity
objective in an off-policy fashion. Our system is designed around two key components: A forward
dynamics model fdyn:S × A 7→ S which aims to approximate the state transition function of the
environment and a policy π(at|st) which aims to take transitions in the environment for which the
prediction error of fdyn is high. Crucially, our setup deviates from recent approaches (e.g. [13, 3, 17])
for curiosity-based rewards in two important aspects: First, we optimise in an off-policy fashion based
on a diverse set of experienced transitions in the environment. Second, we employ an approximate
but efficient data labelling strategy which only assigns curiosity rewards to trajectories when they are
used to update the dynamics model, but refrain from relabeling all trajectories in the policy replay
after every model update. We provide a general overview over the whole system in Figure 2.

We describe the environment in which the agent operates as E = (S,A, P ) with state and action
spaces S and A as well as a state transition function st+1 = P (st, at) over discrete time steps.
The forward-predictive model fdyn with parameters θ approximates the environment’s transition
dynamics as:

ŝt+1 = fdyn(st, at; θ) (1)

When a transition (st, at, st+1) is evaluated by the model, the assigned reward is scaled by the
model’s current prediction error:

r(j)(st, at, st+1) = tanh(ηr ∗ (f (j)dyn(st, at)− st+1)
2) (2)

The ‘state’ of the model is indicated by the number of gradient updates j which have been performed
on it so far. We scale the reward via a hyper-parameter ηr and pass it through a tanh to keep it
bounded for the downstream policy learning procedure. When a new batch of data B is sampled from
the model replay, two operations are performed: First, each τ ∈ B is assigned curiosity rewards rC
according to Equation (2). Second, one gradient update is performed by minimising the model’s
prediction loss:

L(j)
dyn(B) =

∑
τ∈B

∑
(st,at,st+1)∈τ

(f
(j)
dyn(st, at)− st+1)

2 (3)

After one model update, the labeled batch of trajectories B̃ is stored in the policy replay buffer Dπ .
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Figure 3: Learning curves for hierarchical skill learning of lift_red in the JACO environment.
Each RHPO run uses five randomly sampled SELMO policies from the respective intervals as
auxiliary skills (cf. Section 3). The SAC-X baseline uses hand-designed auxiliary reward functions
{reach,move}_red. Mean and standard deviation are plotted for five random seeds for each model
and the plot is smoothed with an exponential filter of σ = 1.5.

3 Utilisation of Emergent Behaviour

As we have highlighted in Figure 1, the constantly evolving curiosity policy develops behaviours
which can correlate to the solutions of concrete, human interpretable tasks. In order to retain those
diverse behaviours to accelerate the learning of new tasks, we run an experiment where self-discovered
behaviour is reused. For instance, an agent which can reuse policies to reach and grasp an object
can potentially learn how to lift an object much more quickly. For this experiment, we employ
Regularized Hierarchical Policy Optimization (RHPO) [20] as this framework allows us to compose
multiple policies in a hierarchical manner.

We begin by running a SELMO experiment where we optimise solely for the curiosity objective and
save a snapshot of the curiosity policy every 100 episodes. Then, the RHPO experiment samples five
SELMO policy snapshots and utilises the behaviour exhibited by them to assist the exploration for
the desired downstream task. In the JACO environment (cf. Appendix A) we define the target task to
be lift_red. While the policy for the target task is randomly initialised, the auxiliary policies are
randomly sampled from the SELMO snapshots and kept fixed during the entire RHPO training. We
differentiate between three different phases from which the SELMO snapshots are chosen: early
snapshots have been trained for up to 10K episodes, mid snapshots are from the interval [10K,
20K) and late snapshots are from [20K, 30K) training episodes. In Figure 3 we compare the
learning progress of the downstream task with the sampled SELMO auxiliary skills against a baseline
featuring a hand-designed task curriculum in an SAC-X framework [14]. Specifically, the baseline
uses auxiliary reward functions which help to reach and move the red cube.

We find that SELMO auxiliaries from the mid and late exploration periods give the learning of
the lifting policy a significant boost which is commensurate with a tuned SAC-X baseline featuring
multiple auxiliary rewards which have been hand-designed to facilitate the learning of lift_red.
This experiment shows that even a simple behaviour retention strategy like policy snapshotting can
already provide clear benefits for downstream learning similar to a specifically designed curriculum
of reward functions. This is a promising result suggesting that independent curious exploration could
be used in lieu of human-engineered task curricula in complex manipulation scenarios.

4 Conclusion

In this paper we have studied the emergence and disappearance of behaviour when optimising an
exploration policy for a curiosity objective derived from a forward-predictive dynamics model. To
this end, we have presented SELMO, a curiosity-based, off-policy exploration approach and applied it
in two continuous control domains: a simulated robotic arm and humanoid robot. We have observed
that complex behaviour emerges and disappears in both settings and provided a baseline for the
utilisation of self-discovered behaviour in a modular downstream learning scenario. The included
experiments only cover a naive form of retaining behaviours throughout an experiment but we believe
that the automatic identification and retention of useful emerging behaviour from curious exploration
can be a fruitful avenue of future investigation in unsupervised reinforcement learning.
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A Simulation Environments

In this section we provide details about the two robotic simulation domains used in our experiments.

A.1 JACO Manipulation Environment

This environment is designed to study manipulation tasks like object lifting and stacking with a
robotic arm (cf. Figure 4). The state observation space consists of 72 dimensions: 24 features are
used to represent the robot’s proprioception as well as the state of each object. The action space spans
9 dimensions: 6 concerning the arm and 3 concerning the three-point gripper. A detailed description
of the environment is provided in Table 1. Interactions with the two objects (O1 = red cube, O2 = blue
cube) are evaluated using the sparse reward functions reach_{red,blue} and lift_{red,blue}.
Each episode in this environment lasts 20 seconds or 400 control timesteps.

Figure 4: The JACO manipulation envi-
ronment. The 6 DoF robot arm with a 3
DoF gripper can interact with multiple
same-sized cubes in its workspace.

FEATURE DIMENSION

arm/joints_pos 6
arm/joints_vel 6
arm/hand/finger_joints_pos 3
arm/hand/finger_joints_vel 3
arm/hand/fingertip_sensors 3
arm/hand/pinch_site_pos 3
proprioception

∑
= 24

O<i>/rel_pos_wrt_tcp 3
O<i>/pos 3
O<i>/orientation 4
O<i>/linvel 3
O<i>/angvel 3
O<i>/proptype 5
O<i>/dimensions 3
perception per object <i>

∑
= 24

arm 6
hand 3
action space

∑
= 9

Table 1: State and action space semantics of JACO
environment.

A.2 OP3 Locomotion Environment

This environment is designed to study locomotion with a humanoid robot (cf. Figure 5). The state
observation consists of 49 proprioceptive features. The 20-dimensional action space controls the
orientations of the robot’s head, ankle, elbow, hip, knee and shoulder. Actions passed to the robot are
smoothed with an exponential filter to reduce motion jerk. A detailed description of the environment
is provided in Table 2. The robot always spawns in a standing, upright position. Locomotion is
evaluated by the dense reward functions walk_{forward,backward} for forward and backward
walking gaits respectively. Each episode in this environment lasts 10 seconds or 200 control timesteps.
If the robot’s hip angle deviates more than 15◦ from an upright orientation, the simulation terminates
early effectively preventing the robot from falling over.

B Model and Training Details

Across all experiments with the SelMo architecture, we consistently use the following hyper-
parameters and model architectures. Each SelMo experiment is run with a single actor for N = 1e5
episodes.
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Figure 5: The OP3 locomotion environ-
ment. The 20 DoF humanoid robot can
walk around on a plane. The episode ter-
minates early, if the OP3 is about to fall
over.

FEATURE DIMENSION

walker/joints/pos 20
walker/imu/linear_acc 3
walker/imu/angular_vel 3
walker/imu/gravity 3
scaled/action_filter/state 20
proprioception

∑
= 49

head_{pan,tilt} 2
{l,r}_ankle_{pitch,roll} 4
{l,r}_elbow 2
{l,r}_hip_{pitch,roll,yaw} 6
{l,r}_knee 2
{l,r}_shoulder_{pitch,roll} 4
action space

∑
= 20

Table 2: State and action space semantics of OP3 envi-
ronment.

Dynamics Model fdyn The world model is implemented as a multi-layer perceptron (MLP)
with the following layer sizes and activation functions: [FC(256), elu(·), FC(256), elu(·),
FC(size_state)] For each environment, size_state is the sum of the dimensions for propriocep-
tion and perception (cf. Appendix A). The world model is optimised using Adam [10] with a learning
rate of ηM = 3e− 4.

Policy Both policy π and critic Q are implemented as two independent MLPs with the following
layer sizes and activation functions:

• Q: [tanh(·), FC(512), elu(·), FC(512), elu(·), FC(256), FC(1)]

• π: [FC(256), elu(·), FC(256), elu(·), FC(128), FC(size_action)]

The size_action is different for each environment (cf. Appendix A). The policy is optimised using
Adam [10] with a learning rate of ηπ = 3e − 4. The reward scale is set to ηr = 10.0 across all
experiments.

Replays The replays DM and Dπ store trajectories with a length of T = 50 transitions. The
buffer sizes used are |DM| = |Dπ| = 5e4 and each trajectory in the buffers can be sampled at most
nmax = mmax = 32 times (cf. Section 2). The batch size of samples drawn from the replays is set
to B = 64.

C Emergence of Behaviour

In this section we present an analysis of the behaviour which emerges in our two simulated domains
as depicted in Figure 1. The JACO domain features a 9 DoF robotic arm and two cubes; the OP3
domain features a 20 DoF humanoid robot. For this experiment, we run the SelMo learning loop
(cf. Figure 2) with a single actor for 100K episodes on each of the environments. During training, the
agent solely optimises its curiosity objective which is defined by Equation (2). The visual inspection
of the experiments reveal that in both cases, diverse sets of human-interpretable behaviour emerge
consistently and are exhibited by the agent for extended periods of time before the ever-changing
curiosity reward function shifts the learning towards a new behaviour. Below, we describe the
observed behaviours in each domain in greater detail.
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Figure 6: Manipulation task evaluation in the JACO environment over the lifetime of one experiment
while the agent is only trained on the curiosity objective (cf. Equation (2)). A snapshot of the curiosity
policy is saved every 100 episodes and evaluated on reaching and lifting the red and blue cubes
respectively. Mean and standard deviation are plotted over 20 evaluation runs per policy snapshot
and the plot is smoothed with an exponential filter of σ = 1.5.

C.1 Emergent Manipulation Behaviour on JACO

A qualitative example timeline of emerging behaviours on the JACO arm is depicted in Figure 1 (top)
and supplemented by a plot evaluating reaching and lifting behaviour during the run in Figure 6. We
find that the agent is very quickly driven towards both cubes with equal attention and starts interacting
with them by pushing them around. Soon thereafter, it discovers that pushing them up the slanted
walls of the bin facilitates picking them up before it stably latches onto a mode in which it prefers
manipulating the red cube over the blue one after approximately 15K episodes. This also coincides
with a first period of sustained lifting of the red cube. We hypothesise that the discovery of lifting said
cube reinforces the interaction with it as it opens up a new dimension along which model prediction
error can be rewarded: the height of the object. After about 25K episodes, it has learned to pick up an
object reliably even without the help of the slopes.

After approximately 40K episodes, the curiosity objective pushes the agent to deliberately take
objects outside of the workspace and perform pick-and-place operations which move a cube over
a long distance but at a lower height. Interestingly, the policy does not degenerate into extreme
behaviours like spinning motions which have been observed in related work [17] but stays focused
on the objects and keeps exploring their physical properties. For instance, at around 70K episodes,
the policy investigates the stability of cube poses in a targeted way by balancing them on their edges
and corners. Finally, after about 80K episodes, it starts exploring the possibilities of moving both
cubes simultaneously.

C.2 Emergent Locomotion Behaviour on OP3

Similar to the JACO arm, we present a timeline of emerging behaviour on the OP3 in Figure 1
(bottom) and a corresponding evaluation of locomotion behaviour in Figure 7. Unsurprisingly, the
agent spends roughly the first 2K episodes – indicated by the steep rise in walking rewards – just
on learning a sense of balance because an episode is terminated early when the torso constraint
(cf. Appendix A) is violated and the agent is about to fall. This also corresponds to maximising the
experienced episode length because this increases the chances of further increasing the accumulated
reward. This finding is in line with earlier work [13] which has shown that the avoidance of a ‘death’
event is a natural by-product of curiosity-driven learning with a positive reward and favourably shapes
the emerging policy.
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Figure 7: Task evaluation in the OP3 environment over the lifetime of one experiment while the agent
is only trained on the curiosity objective (cf. Equation (2)). A snapshot of the curiosity policy is saved
every 100 episodes and evaluated on locomotion (walk_{forward,backward}) tasks. Mean and
standard deviation are plotted over 20 evaluation runs per policy snapshot and the plot is smoothed
with an exponential filter of σ = 1.5.

Once the agent has learned to stay upright, it slowly starts to develop basic locomotion in the form
of stumbling forwards and backwards with only small foot lifting heights which is also reflected
in minor oscillations during the evaluation of the walking rewards in Figure 7. Interestingly, after
around 30K episodes, the agent has discovered to swing its arms to take bigger steps. This is most
impressively first demonstrated after nearly 40K episodes when the agent balances on one foot while
stretching out the other leg using its arms for counterbalancing moves. Using the arms also opens new
avenues for exploration. Approximately 40K episodes into training, the agent has learned to catch
itself when falling backwards. This leads to the discovery of a sit-down behaviour which does not
violate the environment’s torso constraints. After the agent has explored various ‘ground exercises’ it
switches back to walking gaits at around 55K episodes. Then, the whole body movement has become
considerably more nimble and its movement repertoire now features quick turns, stumbling reflexes
and even safe backward leaps. After about 70K episodes the agent starts revisiting earlier behaviour,
e.g. the balancing skill, but keeps adding variations to it like knee-bending or stretching.
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