
Versatile Inverse Reinforcement Learning via
Cumulative Rewards

Niklas Freymuth ∗ Philipp Becker
Autonomous Learning Robots

Karlsruhe Institute of Technology
Karlsruhe, Germany

Gerhard Neumann

Abstract

Inverse Reinforcement Learning infers a reward function from expert demon-
strations, aiming to encode the behavior and intentions of the expert. Current
approaches usually do this with generative and uni-modal models, meaning that
they encode a single behavior. In the common setting, where there are various
solutions to a problem and the experts show versatile behavior this severely limits
the generalization capabilities of these methods. We propose a novel method for
Inverse Reinforcement Learning that overcomes these problems by formulating
the recovered reward as a sum of iteratively trained discriminators. We show
on simulated tasks that our approach is able to recover general, high-quality re-
ward functions and produces policies of the same quality as behavioral cloning
approaches designed for versatile behavior.

1 Introduction and Related Work

Reinforcement Learning shows great potential for tasks with clearly specified objectives, such as
games [22, 29, 8]. Yet, in many real-world scenarios, manually specifying a suitable reward is
complicated and can lead to unintended behavior. Thus, Inverse Reinforcement Learning (IRL)
[27] aims at recovering a reward from expert demonstrations instead. Many tasks allow various
solutions and different experts may chose different approaches, leading to multi-modal, versatile
demonstrations. Properly capturing this versatility does not only better reflects the nature of the task
but also naturally provides robustness to changes in the environment. See Figure 1 for an example.
Many approaches [33, 34, 25, 10, 11] use uni-modal policies together with maximum likelihood
objectives, which forces the model to average over modes of data that cannot be represented. Another
recent line of work [14, 15] is closely connected to Generative Adversarial Networks [17]. They
build on Generative Aderversarial Imitation Learning [19], but reparameterize the discriminator by
inserting the learned policy. It can be shown that this modified discriminator then estimates the
density of the expert demonstrations, which can be used as a reward. These methods implicitly
optimize the reverse KL-divergence allowing them to focus on a single behavior. See e.g., [16, 4] for
a detailed discussion. While this prevents averaging over multiple potential solutions, the uni-modal
nature of the policy still prevents properly capturing the versatility.

We introduce Versatile Inverse Reinforcement Learning (V-IRL), an approach designed specifically
for learning reward functions form highly-versatile demonstrations. We build on recent works in
Varitional Inference [5, 6] and most notably on Expected Information Maximization (EIM) [7], a
method for density estimation that trains a mixture model where each component is able to focus
on a different mode of the given data. EIM is able to reliably model versatile behavior, but does not
provide a reward function. We extend EIM to still produce a similar multi-modal policy while also

∗correspondence to niklas.freymuth@kit.edu

NeurIPS 2021 Workshop on Robot Learning: Self-Supervised and Lifelong Learning, Virtual, Virtual

(a) (b) (c) (d)

Figure 1: a) A versatile path-panning task, where to goal is to find an efficient path from the diamond
to the circle. b) Maximum likelihood methods average over modes, leading to poor solutions. c)
Choosing a single behavior via the information projection works, but is not flexible. d) V-IRL
reconstructs a versatile reward function that allows for good solutions even when some paths are
obstructed.

making its reward function explicit, producing a fine-grained and versatile reward in the process. We
experiment on diagnostic tasks designed to have versatile solutions. The results show that V-IRL
is the only method that is able to consistently capture the multimodal nature of the tasks while
recovering a fine-grained reward.

2 Algorithm

We consider sample trajectories x which follow an unknown distribution p(x) and are given by
the expert. Under the common maximum entropy assumption [33, 18] the expert’s reward is given
by R (x) = log p (x) − c for some constant offset c. Recovering the log density of the unknown
distribution p (x) thus also recovers a reward which explains the experts behavior.

Expected Information Maximization (EIM) [7] iteratively minimizes the reverse KL-Divergence
KL (q (x) || p (x)) between a latent variable policy q (x) =

∫
q (x|z) q(z)dz and an unknown

distribution p (x) of which only samples are available. Similar to EM [13], EIM uses a variational
bound to make the optimization tractable. This bound is given by a reformulation of the bound used
in [5], q∗t+1 (x) =

argmin
q(x)

Eq(x|z)q(z)

[
− log

p (x)

q∗t (x)

]
+ KL(q(z)||q∗t (z)) + Eq(z) [KL (q (x|z) ||q∗t (x|z))] , (1)

where q∗t (x|z) and q∗t (z) denote the model from the previous iteration. Relating Equation 1 to IRL,
qt (x) can be seen as an iteratively optimized behavioral cloning policy. The KL penalties enforce
that consecutive qt (x) do not change too quickly, acting like trust regions [28]. To use this bound
under the assumption that only samples of p(x) are available, EIM employs density ratio estimation
techniques [32] to approximate log (p (x) /q∗t (x)) with a neural network φt (x). In the practical
implementation of the approach the change of the model between iterations is limited and thus, in
each iteration, the density ratio estimator can be reused after a few update steps.

At iteration t, q∗t+1 (x) in Equation 1 is optimal for q∗t+1 (x) ∝ exp (log q∗t (x) + φt (x)) [2]. From
there, induction over t shows that log q∗t+1 (x) = log q∗0 (x) +

∑t
i=0 φi (x) + c for some arbitrary

prior q∗0 (x) and constant offset c. Assuming convergence at iteration T , plugging this into R (x) =
log p (x)− c yields

R (x) = log q∗0 (x) +

T−1∑
i=0

φi (x) , (2)

where we dropped constant offsets as they do not play a role in optimization. Intuitively, each φt (x)
acts as a change of reward that refines the current recovered reward q∗t (x). By adding more φt (x)s,
this gradually produces a more and more precise estimate of the reward. At convergence, the target
distribution p (x) = q∗T (x) is recovered and φT (x) = 0 everywhere. Since each q∗t (x) is the
accumulation of t different estimators φi (x), we call this a cumulative reward.

Comparing V-IRL to EIM, we see that V-IRL can represent an arbitrarily complex reward, as each
additional φt (x) adds capacity to the model. Opposed to this, EIM only recovers a policy and is

2

thus limited to the capacity of this policy by construction. V-IRL also acts in an off-policy setting,
allowing for large update steps of the policy without destabilizing the training. In contrast, both
EIM and generative approaches [14, 15] often need to take sufficiently small steps for the method to
converge [4]. Formulating the IRL problem as a sum of changes of rewards is conceptually easier
than having a generative reward, because estimating a ratio is easier than estimating a density [32].
Another benefit lies in the multi-modal structure of our approach. Since the log density ratio estimate
φt (x) gives a strong signal in areas of uncovered expert modes by design, the recovered reward will
eventually cover the relevant modes of the expert distribution and naturally prefer those with higher
density over lower density ones. If some modes become unavailable at inference time due to changes
in dynamics caused by e.g., obstructions, a policy trained on the recovered reward can still use the
remaining ones as a reward signal.

Importance Sampling In general, q∗t (x) may become arbitrarily complex and can not easily be
samples from. To work around this, we introduce a tractable sampling policy q̃t (x) that approximates
q∗t (x). In our experiments, we use a recent method for variational inference, Variational Inference by
Policy Search (VIPS) [5, 6] to train q̃t by minimizing KL (q̃t (x) ||q∗t (x)). Given q̃t (x), we employ
importance sampling to train a discriminator between expert demonstrations and samples of q̃t (x)
that are weighted by q∗t (x). These samples then act as the importance sampling estimate of samples
of q∗t (x). To do this, we minimize the weighted binary cross entropy loss

LBCE(φt, p, q̃t, q
∗
t) = Ex∼p(x) [− log σ (φt (x))] + Ex∼q̃t(x) [−wt (x) log (1− σ (φt (x)))] (3)

with normalized importance weights wt (x) =
1∫

q∗t (x) dx
q∗t (x)
q̃t(x)

and logits φt (x). It has been shown
that Equation 3 causes the logits φt (x) of the network to recover a log density ratio estimate at
convergence [32]. In other words, φt (x) = log (p (x) /q∗t (x)), which is precisely the change of
reward used in Equation 2. Finally, we add the newly obtained φt (x) to q∗t (x) to obtain a new reward
estimate. We iterate over this until convergence at iteration T , and obtain q∗T (x) as the recovered
reward and q̃T (x) as an optimal policy for this reward. Pseudocode for the approach can be found in
Appendix A.

(a)

5 10 15 20 25 30 35 40 45 50
Target modes

0.0

2.5

5.0

7.5

10.0

12.5

15.0

Nu
m

er
ica

l I
-P

ro
je

ct
io

n

Average since best iteration
V-IRL 1c
V-IRL 10c
G-EIM 1c
G-EIM 10c
EIM 1c
EIM 10c

(b)

Figure 2: a): Visualization of a 30-component GMM.
The heatmap shows the log-density of the GMM. The
ellipsoids are 95%-covariances of the components.
Expert demonstrations are shown with a grey ‘×’. b):
Results for different numbers of target components. V-
IRL provides a stable solution and is able to represent
a larger number of modes than the baselines for the
same number of policy components.

Kernel Density Estimation In practical
settings with highly-versatile behavior, q̃ (x)
is unlikely to cover all relevant modes of
q∗ (x), causing high-variance estimates in
the importance sampling procedure and thus
a poor coverage of the density ratio estima-
tors and subsequently the reward recovered
from them. To prevent this, we follow prior
work [14, 15] and enrich the sampling distri-
bution q̃t (x) with an estimate p̃ (x) of the
target distribution p (x), resulting in a fusion
distribution µt (x) = 0.5q̃t (x) + 0.5p̃ (x) .
Finn et al. [14] and Fu et al. [15] use a Gaus-
sian for p̃ (x). Since this is ill-suited for ver-
satile behavior, we instead resort to a Kernel
Density Estimate [26, 24] of the expert sam-
ples, using a Gaussian kernel for our estimate.
Thus, µt (x) covers all modes of p (x) by
construction. Intuitively, p̃ (x) has the pur-
pose of roughly covering p (x) to stabilize the training process, while q̃t (x) is used to explore and
approximate some modes of p (x) more closely.

3 Experiments

We conduct all our experiments in a non-contextual and episodic setting. We choose Gaussian
Mixture Models (GMMs) for the policies of the different methods. Note that extensions to a
contextual setting are readily available in the form of Gaussian Mixtures of Experts, which we leave
as a promising direction for future work. For hyperparameter settings, refer to Appendix C. We
use EIM [7] as a baseline for versatile behavioral cloning, using the log-density of its policy as

3

(a) G-EIM Training (b) G-EIM Inference (c) V-IRL Training (d) V-IRL Inference

Figure 3: Grid walker experiments. Each walk is made up of d = 5 line segments. The solid
lines are policy component means, the dotted lines are samples from these components. Lines
with a higher opacity correspond to a higher evaluation of the recovered reward. The intermediate
targets are denoted by the vertical dotted lines. a) a 10-component sampling policy of G-EIM. b) a
25-component inference policy trained on the reward recovered by a). c) and d) repeat this for V-IRL.
Both V-IRL and GEIM produce high-quality sampling policies during training. However, only V-IRL
is able to also recover a reward function that extends to modes that were not seen during training.

a surrogate reward function. Additionally, we adapt Adversarial Inverse Reinforcement Learning
(AIRL) [15] to versatile tasks by combining it with EIM. We use the EIM objective of Equation 1 for
the general training procedure, but reparameterize the density ratio according to the AIRL formulation
as φt (x) = log (exp(Rt (x))/qt (x)). Here, qt (x) is the density of the current sampling policy
and Rt (x) = log p (x) is a learned function that recovers the reward up to a constant. We call
this approach generative EIM (G-EIM), and also enrich it with the fusion distribution mentioned in
Section 2. Note that G-EIM is a novel and interesting approach for versatile IRL in itself.

Gaussian Experiments We start with a versatile toy task to showcase the ability of VIRL to
precisely capture highly multi-modal distributions. For this task, the reward is represented by the
log-density of a 2-dimensional GMM with m randomly drawn and weighted components, leading to a
complex and highly multi-modal target reward. An example for m = 30 is given in the left of Figure
2. We evaluate the reverse KL by computing the numerical I-Projection near the ground truth data,
comparing EIM, G-EIM and V-IRL with 1 (‘1c’) and 10 (‘10c’) GMM components each. We optimize
for m = 50 target components and evaluate on m ∈ {5, 10, . . . , 50} components. We report the
average results between the best evaluated iteration and the final iteration to account for instabilities
in the training and evaluation. Results for 5 random seeds can be seen in the right of Figure 2. We
find that V-IRL scales gracefully with the number of modes to be covered, comparing favorably to
both baselines. Inference experiments on the recovered rewards can be found in Appendix B.

Grid Walker A more realistic highly-versatile task is the path-planning task of Figure 1. We model
this task as a walk over d steps of uniform size, where each step is given by an angle. For optimal
solutions, the walker can either go up or down in each step. As a result, all efficient solutions lie
on a regular grid. Appendix B.2 presents a detailed construction of the task. We train V-IRL and
G-EIM with 10-component policies for d = 5 path segments, using the negative ELBO (see e.g., [9])
as the optimization metric. The resulting hyperparameters can be seen in Table 3. We then perform
inference on the recovered rewards for policies with 25 components. The results are shown in Figure
3. We find that the sampling policies for both V-IRL and G-EIM are versatile and precise. However,
the inference policy of G-EIM is mostly limited to behaviors that were found during the training of the
recovered reward. Opposed to this, the recovered reward of V-IRL allows for previously unexplored
modes to be found by the inference policy. We explore this behavior in more detail in Appendix B.2.

4 Conclusions

We propose a novel approach for Inverse Reinforcement Learning for versatile behavior that recovers a
reward by accumulating iteratively trained discriminative models. The key idea of our approach is that
every discriminator is trained to represent an optimal change of the previous sum of discriminators,
and thus this sum ultimately recovers an appropriate reward. We show that this cumulative reward
formulation works well in a variety of versatile tasks, outperforms strong baselines and yields rewards
that generalize beyond the capabilities of the sampling policy.

4

Acknowledgments

The authors acknowledge support by the state of Baden-Württemberg through bwHPC.

References
[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S.

Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew
Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath
Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris
Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker,
Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin
Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale machine
learning on heterogeneous systems, 2015. URL https://www.tensorflow.org/. Software
available from tensorflow.org.

[2] Abbas Abdolmaleki, Rudolf Lioutikov, Jan R Peters, Nuno Lau, Luis Pualo Reis, and Gerhard
Neumann. Model-based relative entropy stochastic search. In Advances in Neural Information
Processing Systems, pages 3537–3545, 2015.

[3] Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. Optuna:
A next-generation hyperparameter optimization framework. In Proceedings of the 25rd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, 2019.

[4] Oleg Arenz and Gerhard Neumann. Non-adversarial imitation learning and its connections to
adversarial methods, 2020.

[5] Oleg Arenz, Gerhard Neumann, Mingjun Zhong, et al. Efficient gradient-free variational inference
using policy search. In Proceedings of the 35th International Conference on Machine Learning,
volume 80, pages 234–243. Proceedings of Machine Learning Research, 2018.

[6] Oleg Arenz, Mingjun Zhong, and Gerhard Neumann. Trust-region variational inference with
gaussian mixture models. J. Mach. Learn. Res., 21:163–1, 2020.

[7] Philipp Becker, Oleg Arenz, and Gerhard Neumann. Expected information maximization:
Using the i-projection for mixture density estimation. In International Conference on Learning
Representations, 2020.

[8] Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemysław Dębiak, Christy
Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris Hesse, Rafal Józefowicz, Scott
Gray, Catherine Olsson, Jakub Pachocki, Michael Petrov, Henrique Pondé de Oliveira Pinto,
Jonathan Raiman, Tim Salimans, Jeremy Schlatter, Jonas Schneider, Szymon Sidor, Ilya
Sutskever, Jie Tang, Filip Wolski, and Susan Zhang. Dota 2 with large scale deep reinforcement
learning, 2019.

[9] David M Blei, Alp Kucukelbir, and Jon D McAuliffe. Variational inference: A review for
statisticians. Journal of the American statistical Association, 112(518):859–877, 2017.

[10] Daniel Brown, Wonjoon Goo, Prabhat Nagarajan, and Scott Niekum. Extrapolating beyond
suboptimal demonstrations via inverse reinforcement learning from observations. In International
conference on machine learning, pages 783–792. PMLR, 2019.

[11] Daniel S Brown, Wonjoon Goo, and Scott Niekum. Better-than-demonstrator imitation learning
via automatically-ranked demonstrations. In Conference on robot learning, pages 330–359.
PMLR, 2020.

[12] François Chollet et al. Keras. https://keras.io, 2015.

[13] Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum likelihood from incomplete
data via the em algorithm. Journal of the Royal Statistical Society: Series B (Methodological),
39(1):1–22, 1977.

5

https://www.tensorflow.org/
https://keras.io

[14] Chelsea Finn, Sergey Levine, and Pieter Abbeel. Guided cost learning: Deep inverse optimal
control via policy optimization. In International conference on machine learning, pages 49–58,
2016.

[15] Justin Fu, Katie Luo, and Sergey Levine. Learning robust rewards with adverserial inverse
reinforcement learning. In International Conference on Learning Representations, 2018.

[16] Seyed Kamyar Seyed Ghasemipour, Richard Zemel, and Shixiang Gu. A divergence mini-
mization perspective on imitation learning methods. In Conference on Robot Learning, pages
1259–1277. PMLR, 2020.

[17] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in neural
information processing systems, pages 2672–2680, 2014.

[18] Tuomas Haarnoja, Haoran Tang, Pieter Abbeel, and Sergey Levine. Reinforcement learning
with deep energy-based policies. In International Conference on Machine Learning, pages
1352–1361. PMLR, 2017.

[19] Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. In Advances in
neural information processing systems, pages 4565–4573, 2016.

[20] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. In Proceedings of the 32nd International Conference on
International Conference on Machine Learning - Volume 37, ICML’15, page 448–456. JMLR.org,
2015.

[21] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua
Bengio and Yann LeCun, editors, 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015.

[22] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G
Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-
level control through deep reinforcement learning. nature, 518(7540):529–533, 2015.

[23] Robert Nishihara, Iain Murray, and Ryan P Adams. Parallel mcmc with generalized elliptical
slice sampling. The Journal of Machine Learning Research, 15(1):2087–2112, 2014.

[24] Emanuel Parzen. On estimation of a probability density function and mode. The annals of
mathematical statistics, 33(3):1065–1076, 1962.

[25] Nathan D Ratliff, J Andrew Bagnell, and Martin A Zinkevich. Maximum margin planning. In
Proceedings of the 23rd international conference on Machine learning, pages 729–736, 2006.

[26] Murray Rosenblatt. Remarks on some nonparametric estimates of a density function. Ann.
Math. Statist., 27(3):832–837, 09 1956. doi: 10.1214/aoms/1177728190. URL https://doi.
org/10.1214/aoms/1177728190.

[27] Stuart Russell. Learning agents for uncertain environments. In Proceedings of the eleventh
annual conference on Computational learning theory, pages 101–103, 1998.

[28] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In International conference on machine learning, pages 1889–1897, 2015.

[29] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driess-
che, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mas-
tering the game of go with deep neural networks and tree search. nature, 529(7587):484–489,
2016.

[30] Bernard W Silverman. Density estimation for statistics and data analysis, volume 26. CRC
press, 1986.

[31] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: A simple way to prevent neural networks from overfitting. J. Mach. Learn. Res., 15(1):
1929–1958, January 2014. ISSN 1532-4435.

6

https://doi.org/10.1214/aoms/1177728190
https://doi.org/10.1214/aoms/1177728190

[32] Masashi Sugiyama, Taiji Suzuki, and Takafumi Kanamori. Density ratio estimation in machine
learning. Cambridge University Press, 2012.

[33] Brian D Ziebart, Andrew L Maas, J Andrew Bagnell, and Anind K Dey. Maximum entropy
inverse reinforcement learning. In Aaai, volume 8, pages 1433–1438. Chicago, IL, USA, 2008.

[34] Brian D. Ziebart, J. Andrew Bagnell, and Anind K. Dey. Modeling interaction via the principle
of maximum causal entropy. In Johannes Fürnkranz and Thorsten Joachims, editors, Proceedings
of the 27th International Conference on Machine Learning (ICML-10), June 21-24, 2010, Haifa,
Israel, pages 1255–1262. Omnipress, 2010.

7

Algorithm 1: Versatile Inverse Reinforcement Learning

Input: Expert Samples χp = {x(i)
p }i=1...M

Input: Reward prior q∗0 (x)
Input: Initial sampling distribution q̃0 (x)
Output: Reward R (x) = log p (x) + c
Output: Optimal policy q̃ (x) for this reward

1 for t = 0 . . . do
2 Train φ (x) on (q̃t, q

∗
t , χp) using weighted binary cross-entropy // Eq. 3

3 Set q∗t+1 (x) = q∗t (x) · exp (φ (x))
4 Update q̃t+1 (x) by minimizing KL (q̃t (x) ||q∗t (x)) using e.g., VIPS
5 end
6 return log q∗t+1 (x), q̃t+1 (x)

A Pseudocode for V-IRL

Algorithm 1 provides pseudocode for V-IRL.

B Additional Experiments

10 20 30 40 50
Target modes

0.0

0.5

1.0

1.5

2.0

2.5

Nu
m

er
ica

l I
-P

ro
je

ct
io

n

Reward inference
V-IRL Training
V-IRL Inference
G-EIM Training
G-EIM Inference

Figure 4: Numerical I-projection of inference policies trained on the best recovered rewards for V-IRL
on the random Gaussian task. ‘Inference’ indicates VIPS with a number of components equal to the
number of target modes trained on the final recovered reward. ‘Training’ refers to the 10-component
learner policy.

B.1 Random Gaussians

We use the reward recovered by the 10-component versions of both V-IRL and G-EIM to train a
newly initialized forward policy using VIPS with as many components as we have Gaussians in
the task. We compare the numerical I-Projection between the 10-component learner policies of the
best reward iteration and the newly trained m-component policies evaluated at their best iteration in
Figure 4. Both methods generate a useful reward function that encodes more information than the
policy that is used to produce it. However, V-IRL generally shows less variance in its solutions, and
produces slightly better rewards overall. A qualitative comparison between the sampling policy, the
recovered reward and the inference policy for V-IRL is given in Figure 5.

B.2 Grid Walker

Construction We model the task as an agent that takes steps of length 1 in a planar space, starting
at (0, 0)T . The action space is parameterized by an angle for each step, and the dimensionality

8

20 10 0 10 20 30
x1

20

10

0

10

20

x 2

21

18

15

12

9

6

3

0

3

(a)

20 10 0 10 20 30
x1

20

10

0

10

20

x 2

9.6

8.4

7.2

6.0

4.8

3.6

2.4

1.2

0.0

1.2

(b)

20 10 0 10 20 30
x1

20

10

0

10

20

x 2

20

18

16

14

12

10

8

6

4

2

(c)

Figure 5: Comparison of contour plots of a) the log-density of the sampling policy used by V-IRL,
b) the average reward recovered by V-IRL over 5 runs, and c) the log-density of a VIPS policy with
30 components that is fit on the recovered reward of b). For all figures, the black ellipsoids are
covariances of the individual expert components scaled to include 95% of samples. 500 randomly
chosen expert samples are marked with a grey ‘×’.

of the task corresponds to the number of steps taken. We only consider the first half of the path
planning example of Figure 1 for our environment. Note that this encodes most of the versatility in
the behavior of the agent. To represent the choices of the agent more clearly, we rotate the example
by 45◦, aligning the waypoints along equidistant vertical lines. In this representation, all efficient
paths lie on a grid inside a 90◦ cone from the origin to the positive x-axis. The result is visualized on
the left of Figure 6.

To construct the actual task, we define x to be the concatenation of absolute angles for the steps. That
is, the position hi (x) ∈ R2 for a sample x = (x1, . . . , xd)

T at step i is given by

hi (x) = hi−1 (x) +

(
cos(xi)
sin(xi)

)
=

(∑i
j=1(cos(xj))∑i
j=1(sin(xj))

)
,

where h0 (x) = (0, 0)T for all x. We then introduce d equidistant 1-dimensional Gaussians centered
on each line and calculate the likelihood of a walk as the product of the likelihood of each of its steps
being drawn from its respective Gaussian. This implicitly creates a grid-like structure, where for each
segment the optimal behavior is to either ‘go up’ or ‘go down’. We set the distance of two consecutive
Gaussians to 0.8. This causes the waypoints of a step to be positioned at a relative difference of
the y-axis of {+0.6,−0.6} compared to the previous step. We use a variance of 1e − 3 for each
Gaussian. The right side of Figure 6 shows 100 random samples for d = 5. The ground truth reward
has 2d distinct modes, each corresponding to one combination of going ‘up’ or ‘down’ d times. All
solutions have equal probability due to the symmetry of the task.

Reward Comparison To explain the results of Figure 3, we analyse how well target modes that are
unexplored by the sampling policy of V-IRL and G-EIM are represented by their recovered rewards.
The steps have length 1 and two consecutive target lines a distance of 0.8. The centers of the modes
are therefore given by

χ+ = {− cos−1(0.8), cos−1(0.8)}d.

We use this to compare the evaluations of a recovered reward at the center of each mode with
evaluations at random points. If the recovered reward represents these unexplored modes well, it will
evaluate to higher values for the modes than it will for random samples. We evaluate 5 trials of V-IRL
and G-EIM with sampling policies with 10 components each. We compare the 32 target centers and
100 negative samples randomly drawn from

[
−1.2 cos−1(0.8), 1.2 cos−1(0.8)

]d
. The normalized

results are shown in Figure 7. V-IRL is able to represent both explored and unexplored mode centers
well. Opposed to this, G-EIM clearly prefers explored modes, failing to distinguish between them
and unexplored ones. We hypothesize that this is due to V-IRL making use of the Kernel Density
Estimate to roughly model the full reward distribution. While G-EIM also uses the Kernel Density
Estimation, its structure causes expert demonstrations that are unexplored by the learner policy to be
less important during the training of its reward function. This can be seen in the following equation

φt (x) = log
exp(Rt (x))

qt (x)
,

9

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
x

4

2

0

2

4

y

Figure 6: Grid walker construction. Left: Rotating the ‘first half’ of the introductory example causes
all efficient waypoints to lie on equidistant vertical lines. Identical steps share the same waypoints.
Right: 200 expert samples of the grid walker task for d = 5 steps. All samples follow one of 25
possible paths. These paths are implicitly encoded through 1-dimensional Gaussians, which are
visualized via the red dotted lines.

V-
IR

L +

V-
IR

L -

G-
EI

M
+

G-
EI

M
-

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
ev

al
ua

tio
n

V-IRL +
V-IRL
G-EIM +
G-EIM

Figure 7: Normalized evaluation of the recovered reward on the grid walker task for d = 5 for V-IRL
and G-EIM. The ‘+’/‘×’ denotes mode centers, ‘−’/‘◦’ randomly drawn samples. The i-th column
of the same color corresponds to the i-th random trials. While V-IRL represents all target modes due
to its KDE, G-EIM represents those explored by its sampling distribution and only approximates the
others.

which states that the evaluation of G-EIM for a sample x negatively depends on the log density of
its sampling policy. Linking this to the introductory example, V-IRL is able to provide paths for the
path-planning task even if these paths were not explored by its sampling policy during training. If the
explored paths were to become unavailable, the others would still provide valid solutions.

C Hyperparameters

All discriminators are feedforward neural networks and implemented using Tensorflow [1] and Keras
[12]. The networks are trained using Adam [21], and we employ employing Dropout [31], L2
regularization and Batch Normalization [20] to avoid overfitting.

Each task uses 8000 expert demonstrations that are drawn from the ground truth reward of the task
using Elliptical Slice Sampling [23]. We train on 8000 expert demonstrations for each task. Policy
updates are performed using default hyperparameters for, and we resort to Optuna [3] for optimizing

10

the discriminator architecture for all methods. We only optimize the number of policy update steps
for V-IRL, as the other methods have shown to be very unstable for larger numbers of update steps.
Hyperparameter ranges are given in Table 1.

Table 1: Ranges of the optimized hyperparameters. The parameters are optimized independently for
each task and method, unless noted otherwise.

Description Range Usage

Network layers [2, 4] Neural Network
Layer size 2[3,8] Neural Network
Batch normalization [False,True] Neural Network
Learning rate [5.0e− 5, 1.0e− 3] Neural Network
Dropout [0, 0.5] Neural Network
L2-Norm [0, 1] Neural Network
Bandwidth (0, 1] KDE
Policy update steps [1, 200] Learner Policy

Chosen Hyperparameters This section lists the hyperparameters chosen by Optuna for all experi-
ments and optimized methods.

Table 2: Hyperparameters used for the random Gaussian experiments. Values with a ‘∗’ are not
optimized and instead set to a default value. We fix the bandwidth according to Silverman’s rule [30]
for simplicity.

Parameters V-IRL 1c V-IRL 10c G-EIM 1c G-EIM 10c EIM 1c EIM 10c

Network Layers 4 4 4 3 4 4
Layer size 256 256 256 256 256 256
Batch norm True False True False False True
Learning Rate 2.68e− 4 3.81e− 4 1.09e− 4 6.22e− 4 8.43e− 4 3.28e− 4
Dropout 0.01 0.01 0 0 0.02 0.02
L2-Norm 0 5.96e− 8 0 4.77e− 7 2.98e− 8 9.54e− 7
Bandwidth 0.215∗ 0.215∗ 0.215∗ 0.215∗ X X
Update steps 1 162 5∗ 5∗ 1∗ 1∗

Table 3: Hyperparameters used for the grid walker experiments. Values with a ‘∗’ are not optimized
and instead set to a default value.

Parameters V-IRL G-EIM

Network Layers 3 3
Layer size 256 64
Batch norm True False
Learning Rate 4.25e− 4 4.38e− 4
Dropout 0.07 0
L2-Norm 4.77e− 7 2.44e− 4
Bandwidth 0.136 0.864
Update Steps 63 5∗

11

	Introduction and Related Work
	Algorithm
	Experiments
	Conclusions
	Pseudocode for V-IRL
	Additional Experiments
	Random Gaussians
	Grid Walker

	Hyperparameters

