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Abstract

We introduce a trajectory generator that can be used to perform sample-efficient pol-
icy search with Bayesian optimization (BO). BO is a sample-efficient approach to
direct policy search that usually does not scale well with the number of parameters.
Our trajectory generator is able to map a compact representation of trajectories to a
high-dimensional trajectory space so that BO can search in the low-dimensional
space. The trajectory generator will be trained as part of a variational autoencoder
on demonstrations from an expert. The trajectory generator contains a trajectory
layer, which is a new building block for neural networks that enforces smoothness
on generated trajectories. We evaluate our approach with grasping on a real robot.

1 Introduction

When planning or control are not applicable because of uncertainty and noise or unavailability of an
accurate model, implementing new behaviors for robots can be difficult. We could then use machine
learning — reinforcement learning (RL, [24]) or imitation learning (IL, [20]). These methods come
with drawbacks if applied to robots in the real world. Despite recent breakthroughs in RL [25, 22, 19]
it is often unstable and not sample efficient enough to learn directly on real robots, which is amplified
by the curse of dimensionality caused by increasing complexity of sensor data and kinematics. We
discuss a setting in which we have one sensor measurement from which we predict a sequence of
commands. Similar problems like playing table tennis [12] have often been handled with policy
search and domain-specific policy representations such as dynamical movement primitives (DMPs,
[7]). These methods mostly use linear or non-parametric models and are stable and sample efficient.
Bayesian optimization for contextual policy search [18] is a prime example of a sample-efficient
policy search algorithm that generalizes over task parameters (contexts), however, it requires policies
with only a few parameters, which we obtain through expert demonstration and manifold learning.

Tailored policy representations such as movement primitives are popular in robotics [13]. The most
prominent examples are dynamical movement primitives (DMPs, [7]), which are suited for imitation
and RL and generate state-space trajectories xt+1 = πv,θ(xt, t), with v = (x0, g, τ), where xt is the
state (position, velocity, and acceleration) at time t, θ are the parameters and v are the metaparameters
(x0: initial state; g: final state; τ : duration of the movement). Trajectory-based policy representations
like DMPs only generalize over their metaparameters. However, we can parameterize them based on
the context, i. e., we can learn a mapping from context s to policy parameters θ. In contextual policy
search (CPS) we seek to optimize arg maxω

∫
s
p(s)

∫
θ
πω(θ|s)E [R(θ, s)] dθds, where s ∈ S is

a context, πω is a stochastic upper-level policy parameterized by ω that defines a distribution of
policy parameters for given contexts [3]. Context can also be interpreted as a parameter of the task.
The return R is extended to take into account the context. During the learning process, we optimize
ω, observe the current context s, and select θi ∼ πω(θ|s). CPS algorithms are often based on
policy search [15, 1, 18]. We are particularly interested in BO-CPS [18], since Gutzeit et al. [4] show
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(a) Architecture of the variational trajectory autoencoder (VTAE).
The encoder reduces the dimensionality of trajectories. The decoder
generates trajectories from a low-dimensional representation. The
decoder has a special structure that splits the initial state from the
shape of the trajectory. Both are combined in the trajectory layer.
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Figure 1: Trajectory autoencoder and corresponding trajectory dataset.

that BO-CPS can efficiently learn throwing on a real robot if the parameter space is reduced to 2D.
However, the dimensions were selected manually and we would like to determine relevant parameters
automatically. Hence, we apply manifold learning to figure out which latent variables are best to
cover the distribution of expert demonstrations.

This work is inspired by Matsubara et al. [17] who introduce stylistic DMPs (SDMPs). SDMPs
reduce the dimensionality of DMPs learned from multiple demonstrations via SVD to identify and
represent multiple styles of similar motions. However, the shortcomings are that SDMPs are deeply
coupled with DMPs and an SVD only allows linear transformations. Rueckert et al. [23] present a
similar extension of ProMPs with hierarchical priors to learn a low number of control parameters
from multiple demonstrations. Our work is similar as we learn a low-dimensional representation of
trajectories from expert demonstrations, however, we do not need an indirect trajectory representation.
As black-box optimization and policy search are closely connected, Bayesian optimization can be
used for policy search but it is difficult to scale to many parameters. Therefore, parameter reduction
has been used in high-dimensional spaces before: Wang et al. [26] use random embeddings to
solve high-dimensional problems with low intrinsic dimensionality. Using fixed low-dimensional
representations of high-dimensional policies has also been proposed for neuroevolution [14]. Our
approach uses a low-dimensional representation learned from data instead.

2 Variational Trajectory Autoencoder (VTAE)

We use a variational autoencoder (VAE, [11]) to learn a trajectory encoding. Figure 1(a) shows our
proposed architecture. We are only interested in the generative model p(X|z) after training, where
X is a trajectory and z a latent vector. The generator creates trajectories without indirection through
movement primitives. For this purpose we develop a new layer that ensure smoothness. This layer
does not contain learnable parameters and can be added at the end of a neural network that should
output trajectories. Thereby, we integrate prior knowledge in the structure of the neural network. The
trajectory layer is linear and does not restrict the capacity of the network.

Trajectories executed by humans are usually smooth and so should the robot’s trajectories be. We use
a trick presented by Kalakrishnan et al. [9] to generate smooth and dense trajectories of end-effector
poses with a layer of a neural network. The trajectory layer implements a functionX = g(ε,x0),
where ε ∈ RT×D and x0 ∈ RD are inputs from previous layers. x0 is the initial state of the
trajectory. X ∈ RT×D is a trajectory of T steps in D dimensions. In practice, we often predict
multiple trajectories at the same time, e. g., when we compute the gradient of a batch during training.
The layer performs a matrix multiplication Lε•d for each column ε•d of ε to compute trajectory
offsets in each dimension d ∈ {1, . . . , D} that will be added to the initial state x0d of that dimension.
Hence, the layer performs only linear operations. We will now define L. Second order backward
differences for a sequence x = (x1, x2, . . . , xT )

T and a temporal difference of ∆t are computed
as ẍt ≈ [xt − 2xt−1 + xt−2] /∆t2, which can be written as matrix multiplication ẍ = Ax, where
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(a) Latent space interpolation along feature axis 1.
Training set is shown in the background.
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Figure 2: Interpolations in latent space.

A ∈ R(n+2)×n, to obtain the sequence of accelerations ẍ from x. We want to find a covariance
matrix of a multivariate Gaussian that generates trajectories with low acceleration according to the
quadratic cost c(x) = xTATAx = ẍT ẍ. Kalakrishnan et al. [9] propose (ATA)−1 as a covariance
matrix N (x|0, (ATA)−1) in the context of motion planning for manipulation. Sampled trajectories
start at zero and end at zero. To generate a distribution that diverges from zero in the end we can
use the upper left quarter of this matrix. We can reparameterize a standard normal distribution
y ∼ N (0, I) to output these trajectories by x = Ly. L is obtained by Cholesky decomposition
LLT = (ATA)−1. We apply this trick to the output of a neural network that transforms a Gaussian
distribution and we extend it to multi-dimensional space.

We use a VAE [11] to train the trajectory generator. Its architecture is displayed in Figure 1(a). We
use dense layers with nonlinear activation functions. We found that a leaky ReLU gives better results
than tanh or ReLU (refer to [16] for definitions). Our decoder has a special structure that includes
the trajectory layer, which needs two inputs ε and x0. These will be generated by two separate
paths in the decoder from the latent vector z. We use a modified loss that is similar to the β-VAE
[5]. Although Higgins et al. [5] suggest to use β > 1 to learn a better disentanglement of the data,
we choose 0 < β < 1 to generate trajectories that are closer to the demonstrated trajectories. This
configuration has been investigated before [6].

3 Experiments

We investigate these questions: (1) Can a VTAE learn a manifold, in which we can smoothly
interpolate between trajectories that are similar to demonstrations? (2) Can we use BO-CPS to learn
a mapping from contexts to parameters in the latent space? (3) Can we do this on a real robot?

Dataset: We recorded 249 pick and place movements from one person with XSens MVN Awinda,
which is a motion capture system based on inertial measurement units. The person had to pick a
small cylindrical object from various positions on a table. We are only interested in grasping motions
and manually extracted those. Each trajectory consists of 76 steps at a frequency of 60 Hz. We only
use the end-effector pose since the positions of the fingers are completely different from the positions
of the fingers on the robot. Figure 1(b) displays all demonstrated trajectories.

Interpolation: We explore the learned projection from the latent space to trajectory space. Figure
2(a) shows interpolation along an axis indicated by the orange dots. In Figure 2(b) we select two
samples from the training set that are clearly different in trajectory space, project them to latent space,
interpolate in latent space and project the interpolated latent variables back to trajectory space. We
can see that we can identify axes in latent space that have different effect on the shape of trajectories.
We can also smoothly interpolate between trajectories.

CPS on Real Robot: After confirming the sample efficiency of BO-CPS in a simulated reaching
task (see Appendix A.3), we use a UR5 robot arm and a Robotiq 2F-140 gripper to perform RL
experiments. BO-CPS will generalize grasping to a predefined area (see Figure 3(b)) by generating
an upper-level policy πω(θ|s), where θ are latent vectors that will be projected to trajectories by
the decoder of the VTAE. The object that will be grasped is a can. We will see that the generated
trajectories are easily executable by a robot arm as they are smooth. We perform 250 episodes, which
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(a) Learning curve of CPS on UR5. (b) Successful and failed grasp attempts.

Figure 3: Results of CPS on UR5.

is a good compromise between minimizing episodes on the real robot on the one hand and reaching a
good performance on the other hand. With a marker-based motion capture system we measure the
pose of the gripper and learn to reach points. The robot does not receive any information other than
the target location (context) and the reward, which is the negative distance between the gripper’s
center and the target. The context is sampled uniformly from an area of the size 0.2m × 0.25m
during training. The learning curve is displayed in Figure 3(a). Each reward corresponds to a different
context, hence, we filter the learning curve by plotting mean and standard deviation of 15 episodes.
Figure 3(b) shows the performance of the final policy. We see that can locations close to the border
or outside of the context area result in failures. However, it is possible to successfully grasp objects
in the middle of the target area. It is often failing to grasp the can just by a centimeter at the border of
the target area.

4 Discussion

We use manifold learning to train a low-dimensional representation of grasps and demonstrate that
this can be combined with CPS algorithms to efficiently learn grasping on a real robotic system. The
approach, however, is not limited to this learning paradigm and we would also like to build a bridge
to deep RL, which learns nonlinear, parametric models but often assumes a tight sensor-actuator
coupling. The decoder of our VTAE could also be used with policy gradient algorithms.
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Figure 4: Projection of grid in latent space to trajectory space with 3 manifold learning algorithms:
PCA, standard VAE, and VTAE. Trajectories are projected on the x-y plane. Each colored line
corresponds to one trajectory that is projected from one point of the grid in latent space. For
comparison, we also show all trajectories from the training set.

A Experiments

A.1 Training and Hyperparameters of Variational Trajectory Autoencoder

In this paper, we reduce the number of dimensions to two to restrict the search space for policy search and
increase sample efficiency. We explored several architectures for the decoder. In the initial architecture we had
an additional layer with 266 nodes as the third layer of the decoder. We found this made the mapping from
latent space to trajectory space too complex so that interpolation between trajectories in latent space was not
smooth enough for contextual policy search. The decoder has to be nonlinear to represent the demonstrated
distribution, but we have to trade off between the capacity to reconstruct the original dataset and the smoothness
of interpolation between trajectories. One way to do this is to tune β. Alternatively, we design the decoder’s
architecture carefully.

We set β = 0.1 as a compromise between fitting the dataset accurately and approximating a Gaussian distribution
in the latent space. We tried β ∈ [0, 0.01, 0.1, 1, 5]. We train the VAE with a batch size of 16 for 500 epochs
with Adam [10]. All samples from the training set are used 500 times. We also trained for 50,000 epochs but did
not see relevant progress after 500 epochs. We explored smaller and larger batch sizes and found that a batch
size of 16 achieves the lowest loss. Training was done either on an Intel i7-5960X CPU, or on an NVidia Titan
X, which was twice as fast.

A.2 Comparison of Manifold Learning Approaches

Figure 4 compares 3 manifold learning approaches to encode the grasp dataset. We generate a grid with 144
points in latent space and project it with a principal component analysis (PCA, [21]), a variational autoencoder
(VAE), and a variational trajectory autoencoder (VTAE). PCA is a linear model and does not capture the
distribution of the training set accurately as there are many trajectories that are not in the training set. This
extrapolation might be desirable, for instance, in cases with only a few demonstrations but it is not in our case
where we want to guide policy search through demonstrations. The VAE uses the same architecture as the VTAE
for decoding ε, however, we can see that the trajectories are more shaky than for the other models. This is a
property that is not desirable for trajectories that should be executed on a robot. The VTAE is a good compromise
between capturing the distribution and smoothness.

A.3 Simulated Reaching Task

We check whether CPS algorithms are able to exploit the latent space to do sample-efficient policy search and
which algorithm works best. For this purpose we will use a simple reaching task: goal positions for the end
effector are located on a line in 3D space. Goals s = (gx, gy)

T are varied along one axis, i. e., gx = 0.35 and
gy ∈ [−0.4,−0.15]. We use them as context for CPS and to define the reward, which is the negative distance of
the end effector’s center after executing the trajectory to the goal. In this experiment, CPS algorithms learn an
upper-level policy πω(θ|s), where θ are latent vectors that will be projected to trajectories by the decoder of
the VTAE. Figure 5(a) shows a solution to the problem that has been obtained by BO-CPS after 250 episodes.
Note that we only optimize the position distance to the goal. We do not penalize accelerations or velocities.
Nevertheless, all trajectories are smooth. That is even the case during the learning process. Figure 5(b) shows
learning curves of the 3 algorithms. BO-CPS outperforms the others, however, its computational complexity
depends on the number of samples that were explored. This makes it slow after more than the 250 episodes
that were needed. Hence, it is not an optimal algorithm for learning in simulation. Nevertheless, for learning in
reality this is perfectly fine because learning in the real world with a robot is a tedious task if it cannot be fully
automated. Hence, we prefer sample-efficiency over low computational complexity.
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Figure 5: Simulated reaching problem.

A.4 Hyperparameters of CPS Algorithms

We compare BO-CPS, C-REPS, and C-CMA-ES. The search space for all algorithms is restricted to [−3, 3]×
[−3, 3] in the latent space. The initial variance of C-CMA-ES and C-REPS is set to 5. We use a quadratic
upper-level policy that maps from context s to trajectory parameters z. Although BO-CPS is non-parametric,
we learn a quadratic policy from all samples at test time to speed up querying parameters for given contexts.
The quadratic policy is obtained in the same way as in C-REPS with all samples. After hyperparameter
tuning we update the upper-level policy in C-REPS after 20 episodes with a history of 100 samples and use
C-CMA-ES’ default values for these parameters. We tried updates after [5, 10, 20, 30, 50] samples and a
training set size of [5, 10, 20, 30, 50, 100, 200, 250] for both algorithms but did not find better configurations.
For BO-CPS we use Gaussian process regression as surrogate model. We designed the kernel k(x1,x2) =
c1Mν(x1,x2) +W (x1,x2) + c2, where Mν is a Matérn kernel with an anisotropic length scale initialized at
1 and limited to [0.01, 100] and the parameter ν is set to 1.5. c1, c2 are constant kernels that are initialized to
100 and are limited to

[
10−3, 105

]
and

[
10−2, 105

]
respectively. W is a white noise kernel initialized at a noise

level of 1 and limited to
[
10−5, 105

]
. We did not invest much time in tuning the kernel hyperparameters. We

use upper confidence bound as acquisition function with the parameter κ to control exploration and exploitation.
κ = 2 is just enough to avoid too much exploitation (we tried 1, 1.5, 2). In every query of the acquisition
function we run 500 iterations of the global optimizer DIRECT [8] and L-BFGS-B [2] to convergence for fine
tuning.

B Code

An implementation of the variational trajectory autoencoder with a simple example application is available at
https://github.com/AlexanderFabisch/vtae.
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