Accelerating Online Reinforcement Learning with
Offline Datasets

Ashvin Nair Murtaza Dalal
UC Berkeley UC Berkeley
Abhishek Gupta Sergey Levine
UC Berkeley UC Berkeley
Abstract

Reinforcement learning provides an appealing formalism for learning control
policies from experience. However, the classic active formulation of reinforcement
learning necessitates a lengthy active exploration process for each behavior, making
it difficult to apply in real-world settings. If we can instead allow reinforcement
learning to effectively use previously collected data to aid the online learning
process, where the data could be expert demonstrations or more generally any
prior experience, we could make reinforcement learning a substantially more
practical tool. While a number of recent methods have sought to learn offline from
previously collected data, it remains exceptionally difficult to train a policy with
offline data and improve it further with online reinforcement learning. In this paper
we systematically analyze why this problem is so challenging, and propose a novel
algorithm that combines sample-efficient dynamic programming with maximum
likelihood policy updates, providing a simple and effective framework that is able to
leverage large amounts of offline data and then quickly perform online fine-tuning
of reinforcement learning policies. We show that our method enables rapid learning
of skills with a combination of prior demonstration data and online experience
across a suite of difficult dexterous manipulation and benchmark tasks.

1 Introduction

Learning models that generalize effectively to complex open-world settings, from image recogni-
tion [8] to natural language processing [3]], relies on large, high-capacity models and large, diverse,
and representative datasets. Leveraging this recipe for reinforcement learning (RL) has the potential
to yield powerful policies for real-world control applications such as robotics. However, while
deep RL algorithms enable the use of large models, the use of large datasets for real-world RL is
conceptually challenging. Most RL algorithms collect new data online every time a new policy is
learned, which limits the size and diversity of the datasets for RL. In the same way that powerful
models in computer vision and NLP are often pre-trained on large, general-purpose datasets and then
fine-tuned on task-specific data, RL policies that generalize effectively to open-world settings will
need to be able to incorporate large amounts of prior data effectively into the learning process, while
still collecting additional data online for the task at hand.

For data-driven reinforcement learning, offline datasets consist of trajectories of states, actions and
associated rewards. This data can potentially come from demonstrations for the desired task [16}, 2],
suboptimal policies [6], demonstrations for related tasks [21]], or even just random exploration in
the environment. Depending on the quality of the data that is provided, useful knowledge can be
extracted about the dynamics of the world, about the task being solved, or both. Effective data-driven
methods for deep reinforcement learning should be able to use this data to pre-train offline while
improving with online fine-tuning.

NeurIPS 2020 3rd Robot Learning Workshop: Grounding Machine Learning Development in the Real World.

Since this prior data can come from a variety of sources, we require an algorithm that does not
utilize different types of data in any privileged way. For example, prior methods that incorporate
demonstrations into RL directly aim to mimic these demonstrations [[11], which is desirable when the
demonstrations are known to be optimal, but can cause undesirable bias when the prior data is not
optimal. While prior methods for fully offline RL provide a mechanism for utilizing offline data [5,[9],
as we will show in our experiments, such methods generally are not effective for fine-tuning with
online data as they are often too conservative. In effect, prior methods require us to choose: Do
we assume prior data is optimal or not? Do we use only offline data, or only online data? To
make it feasible to learn policies for open-world settings, we need algorithms that contain all of the
aforementioned qualities.

In this work, we study how to build RL algorithms that are effective for pre-training from a variety
of off-policy datasets, but also well suited to continuous improvement with online data collection.
We systematically analyze the challenges with using standard off-policy RL algorithms [[7,, 9, [1]
for this problem, and introduce a simple actor critic algorithm that elegantly bridges data-driven
pre-training from offline data and improvement with online data collection. Our method, which uses
dynamic programming to train a critic but a supervised update to train a constrained actor, combines
the best of supervised learning and actor-critic algorithms. Dynamic programming can leverage
off-policy data and enable sample-efficient learning. The simple supervised actor update implicitly
enforces a constraint that mitigates the effects of out-of-distribution actions when learning from offline
data [5, 9]], while avoiding overly conservative updates. We evaluate our algorithm on a wide variety
of robotic control and benchmark tasks across three simulated domains: dexterous manipulation,
tabletop manipulation, and MuJoCo control tasks. We see that our algorithm, Advantage Weighted
Actor Critic (AWAC), is able to quickly learn successful policies on difficult tasks with high action
dimension and binary sparse rewards, significantly better than prior methods for off-policy and
offline reinforcement learning. Moreover, we see that AWAC can utilize different types of prior data:
demonstrations, suboptimal data, and random exploration data.

2 Advantage Weighted Actor Critic: A Simple Algorithm for Fine-tuning
from Offline Datasets

In this section, we will describe the advantage weighted actor-critic (AWAC) algorithm, which trains
an off-policy critic and an actor with an implicit policy constraint. AWAC follows the standard
paradigm for actor-critic algorithms, with a policy evaluation step to learn Q™ and a policy improve-
ment step to update m. AWAC uses off-policy temporal-difference learning to estimate Q™ in the
policy evaluation step, and a unique policy improvement update that is able to obtain the benefits of
offline RL algorithms at training from prior datasets, while avoiding the overly conservative behavior
of offline algorithms. We describe the policy improvement step in AWAC below, and summarize the
entire algorithm thereafter.

Policy improvement for AWAC proceeds by learning a policy that maximizes the value of the critic
learned in the policy evaluation step via TD bootstrapping. At iteration k, AWAC therefore optimizes
the policy to maximize the estimated Q-function Q7* (s, a) at every state, while constraining it to stay
close to the actions observed in the data, similar to prior offline RL methods, though this constraint
will be enforced differently. Using advantages instead of Q-values, we can write this optimization as:

M1 = Arg max Eanr(s)[A™ (s,)] s.t. Dgr(7(-[s)[[m5(-[s)) < e (1
TE

We first derive the solution to the constrained optimization in Equation|I]to obtain a non-parametric
closed form for the actor. This solution is then projected onto the parametric policy class without any

explicit behavior model. The analytic solution to Equation [I|can be obtained by enforcing the KKT
conditions [[13,[14}[12]. The Lagrangian is:

L(m,A) = Eann(1s)[A™ (s,a)] + A(e = Dxr(w(-|s)||ms(:[s))), @)

and the closed form solution to this problem is 7*(a[s) o< ;7ms(als) exp (3A™(s,a)). When
using function approximators, such as deep neural networks as we do in our implementation, we need
to project the non-parametric solution into our policy space. For a policy my with parameters 6, this
can be done by minimizing the KL divergence of 7y from the optimal non-parametric solution 7*

under the data distribution py , (s):

argmin E [Dxr(7*(-|s)||7e(:|s))] = argmin E [E [-log 719(~|s)}] 3)
0 Py (s) 0 prg(s) [m*(]s)

Note that the parametric policy could be projected with either direction of KL divergence. Choosing

the reverse KL results in explicit penalty methods [20] that rely on evaluating the density of a learned

behavior model. Instead, by using forward KL, we can sample directly from 3:

Op+1 = argmax [E 5 {log mo(als) exp <§\A“’“ (s, a))] . 4)
/] s,anrv

This actor update amounts to weighted maximum likelihood (i.e., supervised learning), where the
targets are obtained by re-weighting the state-action pairs observed in the current dataset by the
predicted advantages from the learned critic, without explicitly learning any parametric behavior
model, simply sampling (s, a) from the replay buffer 5. See Appendix for a more detailed
derivation and Appendix [B.3]for specific implementation details.

Avoiding explicit behavior modeling. Note that the update in Equation 4| completely avoids any
modeling of the previously observed data § with a parametric model. By avoiding any explicit
learning of the behavior model AWAC is far less conservative than methods which fit a model 7
explicitly, and better incorporates new data during online fine-tuning, as seen from our results in
Section 3} This derivation is related to AWR [[12]], with the main difference that AWAC uses an
off-policy Q-function Q™ to estimate the advantage, which greatly improves efficiency and even final
performance (see results in Section [6.T). The update also resembles ABM-MPO, but ABM-MPO
does require modeling the behavior policy which can lead to poor fine-tuning. In Section [6.1] AWAC
outperforms ABM-MPO on a range of challenging tasks.

Policy evaluation. During policy evaluation, we estimate the action-value Q™ (s, a) for the current
policy . We utilize a standard temporal difference learning scheme for policy evaluation [7, 4f], by
minimizing the Bellman error. This enables us to learn very efficiently from off-policy data. This is
particularly important in our problem setting to effectively use the offline dataset, and allows us to
significantly outperform alternatives using Monte-Carlo evaluation or TD(\) to estimate returns [12]].

Algorithm summary. The full AWAC algorithm for offline ~ Algorithm 1 Advantage Weighted AC
RL with online fine-tuning is summarized in Algorithm [T} I: Dataset D = {(s,a,s',7), }

In a practical implementation, we can parameterize the actor . [:o1 o buffer 57 _p

and the critic by neural networks and perform SGD updates,
alternating between Eqn. 4] and Bellman updates. Specific
details are provided in Appendix As we will show in
our experiments, the specific design choices described above
enable AWAC to excel fine-tuning after pretraining. AWAC
ensures data efficiency with off-policy critic estimation via

3: Initialize mp, Qg

4: for iteration: = 1,2, ... do
Sample batch (s, a,s’,r) ~ 3
Update ¢ with Bellman eqn.
Update 6 according to Eqn.]
if ¢ > num_offline_steps then

AN I A

bootstrapping, and avoids offline bootstrap error with a con- . Tl ey i~ Py (T)
strained actor update. By avoiding explicit modeling of the . 3 ’<_ B’U (n e T
behavior policy, AWAC avoids overly conservative updates. ||. and if Y

12: end for

3 Experimental Evaluation

In our experiments, we first compare our method against prior methods in the offline training and
fine-tuning setting. We show that we can learn difficult, high-dimensional, sparse reward dexterous
manipulation problems from human demonstrations and off-policy data. We then evaluate our method
with suboptimal prior data generated by a random controller. Finally, we study why prior methods
struggle in this setting by analyzing their performance on benchmark MuJoCo tasks, and conduct
further experiments to understand where the difficulty lies. Videos and further experimental details
can also be found at sites.google.com/view/awac-anonymous

6.1) Comparative Evaluation on Dexterous Manipulation Tasks. We aim to study tasks represen-
tative of the difficulties of real-world robot learning, where offline learning and online fine-tuning are
most relevant. One such setting is the suite of dexterous manipulation tasks proposed by Rajeswaran
et al. [15]. These tasks involve complex manipulation skills using a 28-DoF five-fingered hand in the
MulJoCo simulator [[18]] shown in Figure (I} in-hand rotation of a pen, opening a door by unlatching

https://sites.google.com/view/awac-anonymous

relocate-binary-v0

Success Rate

0.0,
0K 200K 400K

Timesteps

0.0 005
800K 0K 200K 100K 600K 800K OM
Timesteps

BRAC [50]

M 2M 3M 4M
Timesteps

— SACID [45]

600K

—— AWAC (Ours) —— ABM [40] —— AWR [32] BEAR [23] DAPG [37] — SAC+BC [30]

Figure 1: Comparative evaluation on the dexterous manipulation tasks. These tasks are difficult due to their
high action dimensionality and reward sparsity. We see that AWAC is able to learn these tasks with little online
data collection required (100K samples ~ 16 minutes of equivalent real-world interaction time). Meanwhile,

most prior methods are not able to solve the harder two tasks: door opening and object relocation.

the handle, and picking up a sphere and relocating it to a target location. These environments
exhibit many challenges: high dimensional action spaces, complex manipulation physics with many
intermittent contacts, and randomized hand and object positions. The reward functions in these
environments are binary 0-1 rewards for task completion. || Rajeswaran et al. [[15] provide 25 human
demonstrations for each task, which are not fully optimal but do solve the task. Since this dataset is
very small, we generated another 500 trajectories with behavior cloning.

First, we compare our method on the dexterous manipulation tasks
described earlier against prior methods for off-policy learning, offline
learning, and bootstrapping from demonstrations. Specific implemen-
tation details are discussed in Appendix [B:4] The results are shown in
Fig.[I] Our method is able to leverage the prior data to quickly attain
good performance, and the efficient off-policy actor-critic component
of our approach fine-tunes much more quickly than demonstration aug-

mented policy gradient (DAPG), the method proposed by Rajeswaran "%k 2k sk ok sk
et al. [15]. For example, our method solves the pen task in 120K h:)::gp\ sAC
timesteps, the equivalent of just 20 minutes of online interaction. While

o Learning From Random Data

Success Rate

0.2
%/l/«v\,,\ VN vw’**’/fvl“
100K

—— AWAC
— BEAR

—— ABM SAC+BC
the baseline comparisons and ablations are able to make some amount
of progress on the pen task, alternative off-policy RL and offline RL
algorithms are largely unable to solve the door and relocate task in
the time-frame considered. We find that the design decisions to use

Figure 2: Comparison of
fine-tuning from an initial
dataset of suboptimal data
on a robot pushing task.

off-policy critic estimation allow AWAC to significantly outperform

AWR [[12] while the implicit behavior modeling allows AWAC to significantly outperform ABM [17]],
although ABM does make some progress. Rajeswaran et al. [[15]] show that DAPG can eventually
solve these tasks with more reward information, but this highlights the weakness of on-policy methods
in sparse reward scenarios. Similar results hold true in benchmark Gym environments; due to space
constraints, we present these results in the appendix.

6.2) Fine-Tuning from Random Policy Data. An advantage of using off-policy RL for reinforce-
ment learning is that we can also incorporate suboptimal data, rather than only demonstrations. In this
experiment, we evaluate on a simulated tabletop pushing environment with a Sawyer robot (shown in
Fig([T)), described further in Appendix [B-I] To study the potential to learn from suboptimal data, we
use an off-policy dataset of 500 trajectories generated by a random process. The task is to push an
object to a target location in a 40cm x 20cm goal space.

The results are shown in Figure J] We see that while many methods begin at the same initial
performance, AWAC learns the fastest online and is actually able to make use of the offline dataset
effectively as opposed to some methods which are completely unable to learn.

'Rajeswaran et al. [13]] use a combination of task completion factors as the sparse reward. For instance, in
the door task, the sparse reward as a function of the door position d was 7 = 101 4>1.35 + 81 4>1.0 + 214512 —
0.1||d — 1.57||2. We only use the success measure 7 = 141 4, which is substantially more difficult.

References

(1]

2

—

3

—

[4

—

[5

—_—

(6]

[7

—

(8]

[9

[

(10]

(11]

[12]

(13]

(14]

[15]

(16]

(7]

(18]

[19]

[20]

(21]

Abdolmaleki, A., Springenberg, J. T., Tassa, Y., Munos, R., Heess, N., and Riedmiller, M. Maximum
a Posteriori Policy Optimisation. In International Conference on Learning Representations (ICLR), pp.
1-19, 2018.

Atkeson, C. G. and Schaal, S. Robot Learning From Demonstration. In International Conference on
Machine Learning (ICML), 1997.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. BERT: Pre-training of Deep Bidirectional Trans-
formers for Language Understanding. In Association for Compuational Linguistics (ACL), oct 2019.

Fujimoto, S., van Hoof, H., and Meger, D. Addressing Function Approximation Error in Actor-Critic
Methods. International Conference on Machine Learning (ICML), 2018.

Fujimoto, S., Meger, D., and Precup, D. Off-Policy Deep Reinforcement Learning without Exploration. In
International Conference on Machine Learning (ICML), dec 2019.

Gao, Y., Xu, H., Lin, J., Yu, F, Levine, S., and Darrell, T. Reinforcement learning from imperfect
demonstrations. CoRR, abs/1802.05313, 2018.

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. Soft Actor-Critic: Off-Policy Maximum Entropy Deep
Reinforcement Learning with a Stochastic Actor. In International Conference on Machine Learning, 2018.

Krizhevsky, A., Sutskever, L., and Hinton, G. E. Imagenet classification with deep convolutional neural
networks. In Advances in Neural Information Processing Systems (NIPS), pp. 1097-1105, 2012.

Kumar, A., Fu, J., Tucker, G., and Levine, S. Stabilizing Off-Policy Q-Learning via Bootstrapping Error
Reduction. In Neural Information Processing Systems (NeurIPS), jun 2019.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., and Wierstra, D. Continuous
control with deep reinforcement learning. In International Conference on Learning Representations (ICLR),
2016. ISBN 0-7803-3213-X. doi: 10.1613/jair.301.

Nair, A., Mcgrew, B., Andrychowicz, M., Zaremba, W., and Abbeel, P. Overcoming Exploration in
Reinforcement Learning with Demonstrations. In IEEE International Conference on Robotics and
Automation (ICRA), 2018.

Peng, X. B., Kumar, A., Zhang, G., and Levine, S. Advantage-Weighted Regression: Simple and Scalable
Off-Policy Reinforcement Learning. sep 2019.

Peters, J. and Schaal, S. Reinforcement Learning by Reward-weighted Regression for Operational Space
Control. In International Conference on Machine Learning, 2007.

Peters, J., Miilling, K., and Altiin, Y. Relative Entropy Policy Search. In AAAI Conference on Artificial
Intelligence, pp. 1607-1612, 2010.

Rajeswaran, A., Kumar, V., Gupta, A., Schulman, J., Todorov, E., and Levine, S. Learning Complex
Dexterous Manipulation with Deep Reinforcement Learning and Demonstrations. In Robotics: Science
and Systems, 2018.

Schaal, S. Learning from demonstration. In Advances in Neural Information Processing Systems (NeurIPS),
number 9, pp. 1040-1046, 1997. ISBN 1558604863. doi: 10.1016/j.robot.2004.03.001.

Siegel, N. Y., Springenberg, J. T., Berkenkamp, F., Abdolmaleki, A., Neunert, M., Lampe, T., Hafner,
R., Heess, N., and Riedmiller, M. Keep doing what worked: Behavioral modelling priors for offline
reinforcement learning, 2020.

Todorov, E., Erez, T., and Tassa, Y. MuJoCo: A physics engine for model-based control. In /IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pp. 5026-5033, 2012. ISBN
9781467317375. doi: 10.1109/IROS.2012.6386109.

Vecerik, M., Hester, T., Scholz, J., Wang, F., Pietquin, O., Piot, B., Heess, N., Rothorl, T., Lampe, T., and
Riedmiller, M. Leveraging Demonstrations for Deep Reinforcement Learning on Robotics Problems with
Sparse Rewards. CoRR, abs/1707.0, 2017.

Wu, Y., Tucker, G., and Nachum, O. Behavior Regularized Offline Reinforcement Learning. In Interna-
tional Conference on Learning Representations (ICLR), nov 2020.

Zhou, A., Jang, E., Kappler, D., Herzog, A., Khansari, M., Wohlhart, P., Bai, Y., Kalakrishnan, M., Levine,
S., and Finn, C. Watch, try, learn: Meta-learning from demonstrations and reward. CoRR, abs/1906.03352,
2019.

10000~ 6000

HalfCheetah-v2 Ant-v2 Walker2d-v2

8000~ 4000~

4000

6000 -

4000~ 2000~

2000 0

Average Return

0

! ! ; ! !) ~2000- ! , ,) | ! ! ! ! !)
0K 100K 200K 300K 400K 500K 0K 100K 200K 300K 400K 500K OK 100K 200K 300K 400K 500K
Timesteps Timesteps Timesteps

—— AWAC (Ours) —— ABM [40] —— AWR[32] BEAR (23] —— BRAC[50] DAPG [37] —— SACID [45] —— SAC+BC [30]

Figure 3: Comparison of our method and prior methods on standard MuJoCo benchmark tasks.

A Appendix

B nalysis on MuJoCo Benchmarks from Prior Data.

Since the dexterous manipulation environments are challenging to solve, we provide a comparative
evaluation on MuJoCo benchmark tasks for analysis. On these simpler problems, many prior methods
are able to learn, but it allows us to understand more precisely which design decisioins are crucial. For
each task, we collect 15 demonstration trajectories using a pre-trained expert on each task, and 100
trajectories of off-policy data by rolling out a behavioral cloned policy trained on the demonstrations.
The same data is made available to all methods. The results are presented in Figure 3] AWAC is
consistently the best-performing method, but several other methods show reasonable performance.

Data efficiency. The two methods that do not estimate Q™ are DAPG [1]] and AWR [12]. Across all
three tasks, we see that these methods are somewhat worse offline than the best performing offline
methods, and exhibit steady but slow improvement.

Bootstrap error in offline off-policy learning. For SAC [[7], across all three tasks, we see that the
offline performance at epoch 0 is generally poor. Due to the data in the replay buffer, SAC with
prior data does learn faster than from scratch, but AWAC is faster to solve the tasks in general. SAC
with additional data in the replay buffer is similar to the approach proposed by Vecerik et al. [19]].
SAC+BC reproduces Nair et al. [11] but uses SAC instead of DDPG [10] as the underlying RL
algorithm. We find that these algorithms exhibit a characteristic dip at the start of learning.

Conservative online learning. Finally, we consider conservative offline algorithms: ABM [17],
BEAR [9], and BRAC [20]. We found that BRAC performs similarly to SAC for working hyperpa-
rameters. BEAR trains well offline - on Ant and Walker2d, BEAR significantly outperforms prior
methods before online experience. However, online improvement is slow for BEAR and the final
performance across all three tasks is much lower than AWAC. The closest in performance to our
method is ABM, which is comparable on Ant-v2, but much slower on other domains.

B.1 Environment-Specific Details

We evaluate our method on three domains: dexterous manipulation environments, Sawyer manipu-
lation environments, and MuJoCo benchmark environments. In the following sections we describe
specific details.

B.1.1 Dexterous Manipulation Environments

These environments are modified from those proposed by by Rajeswaran et al. [15], and available in
this repository.

pen-binary-v0. The task is to spin a pen into a given orientation. The action dimension is 24 and
the observation dimension is 45. Let the position and orientation of the pen be denoted by x,, and
x, respectively, and the desired position and orientation be denoted by d,, and d,, respectively. The
reward functionis r = 1|, 4 <0.0751|2,-d,]<0.95 - 1. In Rajeswaran et al. [15]], the episode was
terminated when the pen fell out of the hand; we did not include this early termination condition.

https://github.com/anair13/mj_envs

door-binary-v0. The task is to open a door, which requires first twisting a latch. The action
dimension is 28 and the observation dimension is 39. Let d denote the angle of the door. The reward
functionis r = 1 4~1.4 - 1.

relocate-binary-v0. The task is to relocate an object to a goal location. The action dimension is
30 and the observation dimension is 39. Let x,, denote the object position and d,, denote the desired
position. The rewardis r = 1|, _q |<0.1 - 1.

B.1.2 Sawyer Manipulation Environment

SawyerPush-v0. This environment is included in the Multiworld| library. The task is to push a
puck to a goal position in a 40cm x 20cm, and the reward function is the negative distance between
the puck and goal position. When using this environment, we use hindsight experience replay for
goal-conditioned reinforcement learning. The random dataset for prior data was collected by rolling
out an Ornstein-Uhlenbeck process with = 0.15 and ¢ = 0.3.

B.2 Algorithm Derivation Details

The full optimization problem we solve, given the previous off-policy advantage estimate A™* and
buffer distribution g is:

Thtl = argg{ax Eamr(js)[A™ (s, a)] (5)
st Dy, (n([9)|[m5(15)) < e ©
/W(a|s)da =1. (7

Our derivation follows Peters et al. [14] and Peng et al. [[12]]. The analytic solution for the constrained
optimization problem above can be obtained by enforcing the KKT conditions. The Lagrangian is:

L(m, A, @) = Earr(19)[A™ (s,2)] + Ae = Dxr(m(-[s)[|m5(-[s))) + (1 — / m(als)da). (8)

a
Differentiating with respect to m gives:

oL
B A™(s,a) — MNogma(als) + Alogm(als) + A — a.)
m
Setting g—ﬁ to zero and solving for 7 gives the closed form solution to this problem:
1 1
* _ T ATk
" (als) 76 7a(als) exp (/\A (s,a)) , (10)

Next, we project the solution into the space of parametric policies. For a policy my with parameters 6,
this can be done by minimizing the KL divergence of 7y from the optimal non-parametric solution
7* under the data distribution py, (s):

argmin E [Dxp(7*(-|s)||7e(:|s))] = argmin E { E [-log 7rg(~|s)}] (11
0 Py (s) 0 prg(s) L7 (:[s)

Note that in the projection step, the parametric policy could be projected with either direction of KL

divergence. However, choosing the reverse KL direction has a key advantage: it allows us to optimize

as a maximum likelihood problem with an expectation over data s, a ~ (3, rather than sampling

actions from the policy that may be out of distribution for the Q function. In our experiments we

show that this decision is vital for stable off-policy learning.

Furthermore, assume discrete policies with a minimum probably density of 7wy > . Then the upper
bound:

2
Dy, (7" ||mg) SOTGDTV(W*,?W)Z (12)

1 .
S DKL(WQH’]T) (13)
Qg

holds by the Pinsker’s inequality, where Dt denotes the total variation distance between distributions.
Thus minimizing the reverse KL also bounds the forward KL. Note that we can control the minimum
« if desired by applying Laplace smoothing to the policy.

https://github.com/vitchyr/multiworld

Hyper-parameter Value
Training Batches Per Timestep 1
Exploration Noise None (stochastic policy)
RL Batch Size 1024
Discount Factor 0.99
Reward Scaling 1
Replay Buffer Size 1000000
Number of pretraining steps 25000
Policy Hidden Sizes [256, 256, 256, 2506]
Policy Hidden Activation ReLU
Policy Weight Decay 10~*
Policy Learning Rate 3x 107
Q Hidden Sizes [256, 256, 256, 256]
Q Hidden Activation RelLLU
Q Weight Decay 0
Q Learning Rate 3x 107
Target Network 7 5x 1073

Table 1: Hyper-parameters used for RL experiments.

Name Q Policy Objective | 73? | Constraint

SAC Q" | Dki(m||Q) No None

SAC + BC Q" | Mixed No None

BCQ Q™ | Dxu(m|Q) Yes | Support (£°°)
BEAR Q" | Dki(m||Q) Yes | Support (MMD)
AWR Q° | Dkv(Q||me) No | Implicit

MPO Q" | Dku(Q||me) Yes* | Prior
ABM-MPO Q™ | DxL(Q||me) Yes | Learned Prior
DAPG - J(mo) No None

BRAC Q" | Dki(m||Q) Yes | Explicit KL penalty
AWAC (Ours) || Q™ | Dkr(Q||7e) No | Implicit

Figure 4: Comparison of prior algorithms that can incorporate prior datasets. See section for
specific implementation details.

B.3 Implementation Details

We implement the algorithm building on top of twin delayed deep deterministic policy gradient (TD3)
from [4]. The base hyperparameters are given in table[T}

The policy update is replaced with:

1 1
0 —argmax [E |logmg(als)——exp|-A""(s,a . 14
v —agmax B Jogm(als) 5 exo (5475, | (14
We found that explicitly computing Z(s) = [, mz(als) exp(5 A™ (s, a))da results in worse perfor-
mance, so we ignore the effect of Z(s) and empirically find that this results in strong performance
both offline and online.

The Lagrange multiplier A is a hyperparameter. In this work we use A = 0.3 for the manipulation
environments and A = 1.0 for the MuJoCo benchmark environments. One could adaptively learn A
with a dual gradient descent procedure, but this would require access to mg.

As rewards for the dextrous manipulation environments are non-positive, we clamp the Q value for
these experiments to be at most zero. We find this stabilizes training slightly.

B.4 Baseline Implementation Details

We used public implementations of prior methods (DAPG, AWR) when available. We implemented
the remaining algorithms in our framework, which also allows us to understand the effects of changing
individual components of the method. In the section, we describe the implementation details. The
full overview of algorithms is given in Figure

Behavior Cloning (BC). This method learns a policy with supervised learning on demonstration
data.

Soft Actor Critic (SAC). Using the soft actor critic algorithm from [7], we follow the exact same
procedure as our method in order to incorporate prior data, initializing the policy with behavior
cloning on demonstrations and adding all prior data to the replay buffer.

Behavior Regularized Actor Critic (BRAC). We implement BRAC as described in [20] by adding
policy regularization log(mg(a|s)) where 73 is a behavior policy trained with supervised learning on
the replay buffer. We add all prior data to the replay buffer before online training.

Advantage Weighted Regression (AWR). Using the advantage weighted regression algorithm from
[[12]], we add all prior data to the replay buffer before online training. We use the implementation
provided by Peng et al. [12]], with the key difference from our method being that AWR uses TD(\)
on the replay buffer for policy evaluation.

Maximum a Posteriori Policy Optimization (MPQO). We evaluate the MPO algorithm presented
by Abdolmaleki et al. [1]]. Due to a public implementation being unavailable, we modify our algorithm
to be as close to MPO as possible. In particular, we change the policy update in Advantage Weighted
Actor Critic to be:

1
0; «— argemax ESND,aNﬂ'(a\s) IOg To; (G‘S) eXp(EQﬂ—ﬁ (57 a)) : (15)
Note that in MPO, actions for the update are sampled from the policy and the Q-function is used
instead of advantage for weights. We failed to see offline or online improvement with this implemen-
tation in most environments, so we omit this comparison in favor of ABM.

Advantage-Weighted Behavior Model (ABM). We evaluate ABM, the method developed in Siegel
et al. [L7]. As with MPO, we modify our method to implement ABM, as there is no public implemen-
tation of the method. ABM first trains an advantage model 7g,,_(als):

Il

Obm = arg max E.p Zlog To (ar|se) f(R(Ten) — V() | - (16)

0 t=1

where f is an increasing non-negative function, chosen to be f = 1,. In place of an advantage

computed by empirical returns R(7.n) — V' (s) we use the advantage estimate computed per transition
by the @ value Q(s,a) — V(s). This is favorable for running ABM online, as computing R(74.) —

V' (s) is similar to AWR, which shows slow online improvement. We then use the policy update:

1
0; «— argmax E,op gomon(als) {log 7y, (a]s) exp (/\(Qm‘ (s,a) = VT (5))” . (17)
0;

Additionally, for this method, actions for the update are sampled from a behavior policy trained to
match the replay buffer and the value function is computed as V™ (s) = Q™ (s, a) s.t. a ~ 7.

Demonstration Augmented Policy Gradient (DAPG). We directly utilize the code provided in
[L5] to compare against our method. Since DAPG is an on-policy method, we only provide the
demonstration data to the DAPG code to bootstrap the initial policy from.

Bootstrapping Error Accumulation Reduction (BEAR). We utilize the implementation of BEAR
provided in rlkit. We provide the demonstration and off-policy data to the method together. Since the
original method only involved training offline, we modify the algorithm to include an online training
phase. In general we found that the MMD constraint in the method was too conservative. As a result,
in order to obtain the results displayed in our paper, we swept the MMD threshold value and chose
the one with the best final performance after offline training with offline fine-tuning.

https://github.com/vitchyr/rlkit

	Introduction
	Advantage Weighted Actor Critic: A Simple Algorithm for Fine-tuning from Offline Datasets
	Experimental Evaluation
	Appendix
	 nalysis on MuJoCo Benchmarks from Prior Data.
	Environment-Specific Details
	Dexterous Manipulation Environments
	Sawyer Manipulation Environment

	Algorithm Derivation Details
	Implementation Details
	Baseline Implementation Details

