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Abstract
We consider the problem of achieving safe robot learning through learning on
an inherently safe policy class. The safe policy class is inspired by RMPflow, a
framework for robot policy design that provides control-theoretic guarantees. We
re-examine the computational structure of RMPflow, and propose a more efficient
alternate algorithm, called RMP2 (RMPflow Reactive Motion Policy), that uses
modern automatic differentiation tools (such as TensorFlow and PyTorch) to com-
pute the RMPflow policy. Our reduction retains the strengths of RMPflow while
bringing in advantages from automatic differentiation, including 1) support of
general directed acyclic graph (DAG) transformation structures; 2) easy program-
ming interfaces to designing complex transformations; 3) improved computational
efficiency; 4) end-to-end differentiability for policy learning. Because of these
features, RMP2 can be treated as a differentiable policy class for learning with
control-theoretic guarantees, which is suitable for safe exploration and encoding
domain knowledge. Our experiment gives a proof-of-concept demonstration on a
reinforcement learning problem for goal reaching in a cluttered space.

1 Introduction
Reinforcement learning algorithms often rely on random explorations to collect information about
costs or rewards in the environment [1]. Although this strategy has been effective in simulated tasks,
for robotic systems, random explorations can present a significant danger to humans, the environment,
and the robot itself. For such systems, safe learning is important: not only shall the final learned
policies be safe, any intermediate policies that get executed on the robot during learning should
also have safety guarantees. Safe reinforcement learning has mainly been addressed in two ways:
1) through safe policy improvement algorithms and 2) through safe policy classes. Safe policy
improvement algorithms focuses on policy updates that result in bounded constraint violation during
learning [1, 20, 22], while the other methodology provides safety guarantees by directly learning
on an inherently safe policy class through, e.g. projected policy gradient [5, 6, 8]. Our work is in
line with the latter: we propose a differentiable policy class for robot learning with control-theoretic
guarantees, which is inspired by RMPflow [3], a recently introduced framework for reactive motion
control that can perform stable and safe policy fusion with computational efficiency.

In RMPflow [3], the full robot control problem is decomposed into smaller subtasks, such as goal
reaching, collision avoidance, maintaining balance, etc., each of which is achieved by a reactive
policy. RMPflow treats these task spaces, where the task specifications are described, as manifolds
mapped from the configuration space of the robot, and defines motion policies to satisfy a certain
geometric consistency induced by the geometries of these task spaces. In [3], it is proved that the
policy RMPflow constructed is stable and can be efficiently computed through message passing on
a tree-structured task map. Because of the control-theoretic guarantees and computation efficiency,
RMPflow has been applied to many robotic applications [11–14, 16, 21, 23].

Policy learning with the structure of RMPflow preserve several advantages: 1) It allows the policies to
partially parameterized. As an example, one can hand design safety-critical subtask policies for, e.g.
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collision avoidance, and learn others to improve the policy performance; 2) As a result, it provides
non-statistical guarantees, such as stability and safety, throughout learning; 3) The policy learned on
one robot can be transferred to other robots and tasks [2]; and finally, 4) The policy parameterization
is shown to be expressive in generating complex robot motion with hand-designed subtask policies [3],
and these hand-designed substask policies can be used to partially parameterize the policy.

However, the RMPflow algorithm was originally designed for reactive control rather than learning:
following the original RMPflow message passing algorithm can risk of undermining the flexibility
and computational efficiency in learning. One reason is that RMPflow uses a rather complicated user
interface involving a tree data structure that is non-trivial for users to specify. The other reason, which
is perhaps more important, is that it is hard and inefficient to trace the gradient flow in the RMPflow
message passing algorithm. Although recent work has looked into learning with RMPflow [14, 15, 17],
these methods either largely simplify the learning problem so that differentiating through RMPflow is
not needed [14, 17] or only allows for a very limited parameterization of the policy [15]. For example,
Meng et al. [14] and Rana et al. [17] learn the subtask policies independently through imitation and
then use RMPflow to combine the learned RMPs with other hand-specified policies; and Mukadam
et al. [15] learn scalar weight functions for pre-defined subtask polices.

In this work, we propose a simple alternative algorithm, called RMP2, to realize the policy output by
RMPflow for end-to-end learning, without using the tree data structure and message passing steps of
the RMPflow algorithm [3]. Instead RMP2 operates by querying the Gradient Oracle (though back-
propagation) in automatic differentiation [9]. RMP2 has several advantage over the original RMPflow
algorithm: 1) RMP2 relaxes the assumption on using tree-structured task maps in the RMPflow
algorithm [3] to work with any directed acyclic graph (DAG) task maps. 2) RMP2 allows for a
simper user interface. The user only needs to specify the task map using an automatic differentiation
library, the automatically constructed (directed acyclic) computational graph can then be used for
computing the RMPflow policy. 3) RMP2 uses a smaller memory footprint than RMPflow, while
having the same time complexity. 4) RMP2 is much easier to implement in conjunction with learning
algorithms: as RMP2 is implemented using operators supported by automatic differentiation libraries,
it is convenient to take the gradient, or higher order derivatives, of any function with respect to the
parameters in subtask policies and task maps. This makes RMP2 a policy class that is generally
applicable to many end-to-end learning scenarios and algorithms.

2 Background
2.1 Setup: Configuration Space and Task Space
Suppose the robot’s configuration space C (e.g. the joint space of a robot with revolute joints) is
a d-dimensional smooth manifold that can be described by generalized coordinates q ∈ Rd. For
simplicity of exposition, we assume that the acceleration of the robot q̈ can be controlled directly.
This condition is true when the robot is fully actuated and has been feedback linearized by, e.g., using
an inverse dynamics model. We will call (q, q̇) the state of the robot on the configuration space C, as
we focus on acceleration-controlled systems.

In motion control problems, typically a task is not directly described in the generalized coordinates
q ∈ Rd, but in terms of another set of task coordinates x ∈ Rm that are related to the generalized
coordinates through a nonlinear mapping ψ, i.e. x = ψ(q). We call this mapping ψ the task map and
refer to the image manifold of C under ψ as the task space, which is denoted as T . Our goal is to
design an acceleration policy π such that the system following q̈ = π(q, q̇) would exhibit desired
behaviors when viewed in the task space T . When the robot needs to satisfy various performance
criteria in a multi-task control problem, the task space T can then become a complicated manifold
T =

∏K
k=1 Tk embedded in a high-dimensional ambient space, where K is the number of subtasks

and Tk denotes subtask spaces, the manifold for the kth subtask. Importantly, the coordinates of these
subtask spaces are not independent but intertwined together as the image of the common configuration
space C under the task map ψ. For example, in an anthropomorphic robot, the torso’s motion affects
both the stability and the reachable region of the hands. As a result, when the number of tasks K is
large, there may not be enough of degrees of freedom to find a configuration space policy π to exactly
replicate the task policy without comprising the desired accelerations of all subtasks.

2.2 RMPflow
RMPflow [3] is a computational framework designed to address the multi-task control problems
mentioned above. RMPflow resolves the conflicts between different subtasks by describing each
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subtask policy (e.g. for the kth subtask) as a Riemannian Motion Policy (RMP) [18]: each subtask is
associated not only with the desired acceleration adk(x, ẋ), but also with a positive semi-definite matrix
function Mk(x, ẋ) that depends on the state (i.e. the position and the velocity) of the subtask. Given
RMPs for the subtasks, RMPflow generates the policy π on the configuration space by combining
these subtask RMPs through message passing on a tree data structure. It can be proved that this
final policy π is Lyapunov stable, when Mk is derived appropriately from a Riemannian metric that
describes the motion induced by adk for each policy [3, 12].

The RMPflow algorithm is based on two components: 1) the RMP-tree: a directed tree encoding the
structure of the task map. In the RMP-tree, a node is associated a manifold, and an edge represents a
smooth map from a parent node manifold to its child node manifold. The root node of the RMP-tree
and the leaf nodes correspond to the configuration space C and the subtask spaces {Tk} on which the
RMPs are hosted, respectively. 2) the RMP-algebra: a set of operations to propagate information
across the RMP-tree. We refer the readers to [3] or Appendix A for a detailed description of RMPflow.

A connection is made in [2, Chapter 11.7] between the message passing algorithm of RMPflow and
sparse linear solvers. Consider an RMP-tree with a set of nodes V . Let L ⊂ V be the set of leaf
nodes and r be the root node. In [2], it is proved that the desired acceleration of the RMPflow policy
π(q, q̇) is the solution to the following least squares problem:

min{av:v∈V}
∑

v∈L
1
2 ‖av − adv‖2Mv

,

s.t. av = Jvau + J̇v ẋu, ∀ v ∈ V \ r, u = P(v)
(1)

where, for a leaf node v ∈ L, adv and Mv together are a leaf-node RMP, Jv denotes the Jacobian
of the task map from P(v), the parent node of v, to v. The RMPflow algorithm is essentially an
efficient routine that uses the duality of (1) and the sparsity in the task map to compute ar. RMPflow
has the time complexity of O(Nbd3) and space complexity of O(Nd2 + Ld2), where N and L are
the number of nodes and leaf nodes, b is the maximum branching factor, and d is the maximum
dimension of nodes (See Appendix C for the complexity analysis).

3 RMP2 based on Automatic Differentiation
3.1 An RMPflow Policy without the RMPflow Algorithm
If we are interested in learning an RMPflow policy rather than designing it, the focus changes: com-
putational efficiency and ease of implementation when used in conjunction with learning algorithms
become paramount. Machine learning pipelines commonly use automatic differentiation tools, which
coincidentally provide many features that RMPflow uses, such as graph structures and the chain rule.

An important implication of the insight in [2, Chapter 11.7] (that RMPflow is a sparse linear solver)
is that the RMPflow policy can also be computed by solving the unconstrained version of (1):

mina′
r∈Rd

∑
v∈L

1
2 ‖Jv;ra

′
r + J̇v;rq̇− adv‖2Mv

, (2)

where Jv;r is the Jacobian matrix of the subtask map from the root r to the leaf v. As in (1), the
Jacobians and velocities here are treated as constants in the optimization as they are only dependent
on the state. Note that (2) has a closed-form solution:

ar =
(∑

v∈L J
>
v;rMvJv;r

)†︸ ︷︷ ︸
M†

r

(∑
v∈L J

>
v;rMv(a

d
v − J̇v;rq̇)

)
︸ ︷︷ ︸

fr

. (3)

3.2 RMP2 based on Reverse Accumulation
We propose RMP2 (Algorithm 1), an efficient reduction technique based on this idea. RMP2

computes the RMPflow policy by using automatic differentiation libraries to compute the closed-form
solution (3). It has the same time complexity of O(Nbd3) as RMPflow [3], while enjoying a smaller
memory footprint of O(Nd + Ld2). It should be noted that explicitly calculating the Jacobian
matrix Jv;r for computing Mr and fr in (3) would result in excessive time and space complexity
of O(Nbd3L) and O(NLd2), respectively. To avoid this, we leverage a technique, called reverse
accumulation [7] (also known as double backward), which is used to compute Jacobian-vector-product
(see Algorithm 3 in Appendix) in reverse mode automatic differentiation.

In the forward pass of RMP2 (Algorithm 1, line 3–5), the leaf node velocities ẋi = Jiq and curvature
terms ci = J̇iq are computed using Jacobian-vector-product. In the backward pass (line 7–10),
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RMP2 computes Mr using reverse accumulation in line 10. This is accomplished by first creating
a mirrored task image (line 7 and 8) and then computing Mr by jacobian(gradient(v,q),q′).
Similar technique is applied when computing fr.

Algorithm 1 RMP2

1: Input: root state (q, q̇), task map ψ, rmp_eval
2: Return: motion policy π(q, q̇)
3: {xi}Li=1 ← task_map(q)
4: {ẋi}Li=1 ← jvp({xi}Li=1,q,q̇) // leaf node velocity
5: {ci}Li=1 ← jvp({ẋi}Li=1,q,q̇) // curvature terms
6: {(Mi, fi)}Li=1 ← rmp_eval({(xi, ẋi)}Li=1)
7: q′ = copy(q) // create a copy and without gradient flow
8: {x′

i}Li=1 ← task_map(q′) // a mirrored image
9: v←

∑L
i=1 x

>
i Mix

′
i, w←

∑L
i=1 x

>
i (fi −Mici) // auxiliary variables

10: Mr ← jacobian(gradient(v,q),q′), fr ← gradient(w,q) // compute root RMP
11: π(q, q̇)←M†

r fr

Since RMP2 is implemented using the automatic differentiation libraries, computational graph can be
automatically constructed while calculating the policy. This allows for convenient gradient calculation
of any function with respect to any parameters in, e.g. task maps and RMPs. This fully differentiable
structure is important for end-to-end learning of these parameters in many learning scenarios. Another
benefit of RMP2 is that the assumption of using tree-structured task maps can be relaxed to arbitrary
directed acyclic graph (DAG) task maps. While Cheng et al. [3] show that every task map has a
tree representation, not all motion control problems have an intuitive RMP-tree representation (e.g.
multi-robot control [13]). If they are implemented using a tree structure, extra high-dimensional
nodes would be induced and the user interface becomes tedious.

4 Experiments
We consider an RL task on a 2-d point robot as a proof of concept example for policy learning. The
objective here is to reach a goal while avoiding static obstacles in the environment. The motion policy
inputs include the state of the robot, the goal position, as well as the centers and radii of the obstacles.
We compare reinforcement learning with the RMP2 policy (RMPflow policy realized by RMP2) and a
feed-forward neural-net policy. The RMPflow policy is partially parameterized as the composition of
a neural-net goal reaching RMP and hand-specified collision avoidance RMPs suggested in [3]. The
reward given to the robot at each step is the negative Euclidean distance to the goal, with an additional
penalty of −100 if the robot collides with an obstacle. We run the natural policy gradient [10]
with a step size of 0.1 for 500 iterations to train the policies end-to-end to optimize the expected
accumulated reward. The average accumulated reward after training for the RMP2 policies and
the neural-network policies are −37.90 and −1187.66, respectively (larger is better). Please see
Appendix D for implementation details. We test the trained policies on environments both within
the training distribution (Figure 1, left 2) and outside of the distribution (Figure 1, right 2). For each
policy, we visualize 4 trajectories given by policies trained with different random seeds. In all the
cases, the RMP2 policy (blue) manages to reach the goal while avoiding collision with any obstacles,
thanks to the additional structure provided by the hand-specified policies. The neural network policy
(orange) only learns to avoid collision with obstacles. Interestingly, a common strategy among the
neural network policies is to move outside the region where the obstacles are distributed during
training, so that it can avoid all potential collision (and hence any chance of reaching the goal).

Figure 1: The RMPflow policy and neural-net policy performing a reaching task with a point robot,
where each trajectory shows a policy with a random initialization of network weights. The policies
are tested on environments within (left 2) and outside (right 2) the training distribution. The RMPflow
policy succeeds consistently whereas the neural-net policy only learns to avoid collision.
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A RMPflow

Here we describe the message passing steps of RMPflow [3]. The algorithm is based on two
components: 1) the RMP-tree: a directed tree encoding the structure of the task map; and 2) the
RMP-algebra: a set of operations to propagate information across the RMP-tree. In the RMP-tree,
a node u stores the state (xu, ẋu) on a manifoldMu and the associated RMP (au,Mu)

Mu , and an
edge e represents to a smooth map ψe from the manifold of a parent node manifold to its child
node manifold. The root node of the RMP-tree (denoted as r) and the leaf nodes correspond to
the configuration space C and the subtask spaces {Tk} on which the user-defined RMPs are hosted,
respectively. The RMP-algebra comprises of three operators, which are for propagating information
on the RMP-tree. For illustration, we consider the node u on manifoldM with coordinates x and its
M child nodes (vm on manifold Nm with coordinates ym for m = 1, . . . ,M ) in the RMP-tree.

(i) pushforward propagates the state of a node (x, ẋ) in the RMP-tree to update the states
of its M child nodes {ym, ẏm}Mm=1. The state of its mth child node is computed as
(ym, ẏm) = (ψm(x),Jm(x) ẋ), where ψm is the smooth map of the edge connecting the
two nodes and Jm = ∂xψm is the Jacobian matrix.

(ii) pullback propagates {[fvm ,Mvm ]Nm}Mm=1, the RMPs of the child nodes in the natural
form, to the parent node as [fu,Mu]

M:

fu =
∑M
m=1 J

>
em

(fvm −Mvm J̇em ẋ), Mu =
∑M
m=1 J

>
em

MvmJem . (4)

The natural form of RMPs are used here since they more efficient to combine.
(iii) resolve maps an RMP from its natural form [fu,Mu]

M to its canonical form (au,Mu)
M

by au = M†u fu, where † denotes Moore-Penrose inverse.

RMPflow (in Algorithm 2) computes the policy π(q(t), q̇(t)) = ar on the configuration space C
through the following procedure. Given the state (q(t), q̇(t)) of the configuration space C at time t,
the pushforward operator is first recursively applied to the RMP-tree to propagate the states up to
the leaf nodes. Then, the subtask RMPs are evaluated on the leaf nodes and combined recursively
backward along the RMP-tree by the pullback operator. The resolve operator is finally applied
on the root node r to compute the desired acceleration ar.

Algorithm 2 RMPflow Algorithm (Message Passing) [3]
1: Input: root state (q, q̇), RMP-tree, rmp_eval
2: Return: motion policy π(q, q̇)
3: nodes← RMP-tree.topologically_sorted_nodes

// forward pass
4: For node in nodes: // from root to leaves
5: For child in node.children:
6: child.state← pushforward(node.state)

// evaluate leaf RMPs
7: For node in RMP-tree.leaves:
8: node.rmp← rmp_eval(node.state)

// backward pass
9: For node in reversed(nodes): // from leaves to root

10: node.rmp← pullback (node.child_rmps)
// resolve for the motion policy

11: π(q, q̇)← resolve(RMP-tree.root.rmp)

B The Reverse Accumulation Algorithm for Jacobian Vector Product

The reverse accumulation algorithm to compute Jacobian-vector-product in RMP2 is listed in Algo-
rithm 3. The algorithm computes Jacobian-vector product through 2 passes. An auxiliary all ones
vector λ is created and the gradient with respect to λ is tracked (line 2). In the first pass, the scalar
λ>i y is computed, and then the auxiliary value z = (∂x(λ

>y))> is obtained through backward pass
(line 4). Note that, numerically,

zj = ∂xj
(
∑
k λk yk) =

∑
k λk

(
∂xj

yk
)

where zj denotes the jth element of z, same applies to other vectors, e.g. x, y and λ.
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In the second pass (line 5), the Jacobian-vector product is computed as (∂xy)v = (∂λz
>v)>, since

∂λi
z>v = ∂λi

(∑
j zjvj

)
= ∂λi

(∑
j

∑
k λk

(
∂xj

yk
)
vj

)
=
∑
j

(
∂xj

yi
)
vj = (∂xyi)v.

Algorithm 3 jvp(y,x,v)
1: Input: y, x, v
2: Return: (∂xy)v
3: λ← 1 // create dummy variable for reverse accumulation
4: z← gradient(λ>y,x) // compute sum of partial derivatives
5: compute Jacobian-vector product (∂xy)v← gradient(z>v,λ)

C Complexity

Consider a graph-structured task map with N nodes, where each node has dimension in O(d) and has
at most b parents. We suppose that L ≤ N nodes are leaf nodes, and that the automatic differentiation
library is based on reverse-mode automatic differentiation.

We first analyze the complexity of task map evaluation and Jacobian-vector-product subroutine
(Algorithm 3) based on reverse accumulation in preparation for the complexity analysis for RMP2.

task map evaluation: For each node in the graph, the input and output dimensions are bounded
by O(bd) and O(d), respectively. Hence, evaluating each node has a time complexity in O(bd2).
Because each node is evaluated exactly once in in computing the full task map, the total time
complexity of task map evaluation O(Nbd2). If the Gradient Oracle will be called (as in RMP2

and the Direct algorithm), the value of each node needs to be stored in preparation for the gradient
computation. Overall this would require a space complexity in O(Nd) to store the values in the entire
graph.

Jacobian-vector-product withL output nodes: Suppose that the output of the graph in Algorithm 3,
y, is a collection of L nodes in the graph. During reverse accumulation, the task map is first computed,
which, based on the previous analysis, has time and space complexity of O(Nbd2) and O(Nd),
respectively. The dummy variable λ is of size O(Ld) and computing the inner product λ>y requires
O(Ld) computation (i.e. it creats a new node of dimension 1 with 2L parent nodes of dimension
in O(d)). By the reverse-mode automatic differentiation assumption, the first backward pass on
the graph (line 4) has time complexity of O(Nbd2 + Ld) = O(Nbd2) and space complexity of
O(Nd+ Ld) = O(Nd) [9]. The final backward pass (line 5) is on a graph of size O(N), as the first
backward pass creates additional O(N) nodes. With similar analysis, the second backward pass have
time complexity of O(Nbd2 + Ld) = O(Nbd2) and space complexity of O(Nd+ Ld) = O(Nd).
Therefore, the time and space complexity of Algorithm 3 is O(Nbd2) and O(Nd), respectively.

C.1 RMP2

Forward pass: The complexity of line 3–5 in Algorithm 1 follow the precursor analyses above.
Here the computation graph is always of size O(N) (the original task map is in O(N) and each call
of Gradient Oracle in the Jacobian-vector-product subroutine creates additional O(N) nodes in the
computation graph). By previous analysis, the time and space complexity of the forward pass are
O(Nbd2) and O(Nd), respectively.

Leaf evaluation: Assume, for each leaf node, O(d3) computation is needed for evaluating the
metric and O(d2) for acceleration. The leaf evaluation step then have time complexity of O(Ld3)
and space comlexity of O(Ld2 + Ld) = O(Ld2).

Backward pass: By previous analysis, task map evaluation requires O(Nbd2) computation and
O(Nd) space. The vector-matrix-vector product for computing v and w has time complexity of
O(Ld2). To compute the metric at root, Mr, the first backward pass, gradient(v,q) needs
O(Nbd2) time and O(Nd) space as it operates on a graph of size O(N) where the number of parents
of each node is in O(b)a. The jacobian operator in line 10 is done by O(d) sequential calls of

aExcept the final node aggregating L outputs. However, it does not change the complexity as it adds a
complexity in O(Ld2) < O(Nbd2).
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Algorithm 4 Direct Algorithm 2
1: Input: root state (q, q̇), task map ψ, rmp_eval
2: Return: motion policy π(q, q̇)

// forward pass
3: {xi}Li=1 ← task_map(q)
4: {Ji}Li=1 ← jacobian({xi}Li=1,q)
5: {ẋi}Li=1 ← jvp({xi}Li=1,q,q̇) // leaf node velocity
6: {ci}Li=1 ← jvp({ẋi}Li=1,q,q̇) // curvature terms

// evaluate leaf RMPs
7: evaluate leaf RMPs {(Mi, fi)}Li=1 ← rmp_eval({(xi, ẋi)}Li=1)

// backward pass
8: Mr ←

∑L
i=1 J

>
i MiJi, fr ←

∑L
i=1 J

>
i (fi −Mici) // compute root RMP

// resolve for the motion policy
9: π(q, q̇)←M†

r fr

the Gradient Oracle. Hence, it has time complexity of O(Nbd3) and space complexity of O(Nd).
(Because we are not taking further derivatives, the values of the new graphs created in calling the
jacobian operator do not need to be stored.) With similar analysis, computing fr requires O(Nbd3)
computation and O(Nd) space.

Resolve: The matrix inversion has time complexity of O(d3) and space complexity of O(d2).

In summary, the time complexity of RMP2 is O(Nbd2 + Ld3 +Nbd3 + d3) = O(Nbd3) and the
space complexity is O(Nd+ Ld2).

C.2 RMPflow

First we need to convert a graph with O(b) parent nodes into a tree. This can be done by creating
meta nodes that merge all the parents of a node into a single parent node; inside the mega node, each
component is computed independently. Therefore, for a fair comparison, in the following analysis, we
shall assume that in the tree version evaluating each node would need a time complexity in O(bd2).
We suppose the space complexity to store all the nodes is still in O(Nd) because the duplicated
information resulting from the creation of the meta nodes can be handled by sharing the same memory
reference in a proper implementation [3].

Forward pass: During the forward pass, similar to the reverse accumulation analysis, O(bd2)
per node is needed for pushforward, i.e. computing the pushforward velocity through reverse
accumulation, yielding a time complexity of O(Nbd2). The space complexity is O(Nd) for storing
the state at every node.

Leaf evaluation: Same as RMP2.

Backward pass: Computing the metric in (4) requires O(bd3) computation per node, yielding
time complexity of O(Nbd3) and space complexity of O(Nd2). The curvature term J̇em ẋ can be
computed through reverse accumulation similar to RMP2, which has time complexity of O(bd2) per
node. The matrix-vector products to compute the force requires O(bd2) space and computation for
each node.

Resolve: Same as RMP2.

Thus, the time complexity of RMPflow is O(Nbd2 + Ld3 +Nbd3 +Nbd2 + d3) = O(Nbd3) and
the space complexity is O(Nd+ Ld2 +Nd2 + bd2 + d2) = O(Nd2 + Ld2).

D Experiment Details

D.1 Environment Setup

The RL example considers a point robot on a 2-d plane. The state of the robot is composed of
the coordinate on the plane, x ∈ R2, as well as the velocity, ẋ ∈ R2. The robot is modeled as a
discrete-time double integrator system,

xt+1 = xt + ẋt · dt,
ẋt+1 = ẋt + ut · dt,

(5)
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where u ∈ R2 is the control input, and dt = 0.1 is the sampling time for the discrete-time system.

The environment has a randomly generated goal g ∈ R2 and up to 3 randomly generated circular
obstacles {Oi}Ki=1. An obstacle is denoted as Oi := (oi, ri), where oi ∈ R2 is the center of the
obstacle Oi and ri is the radius. At every step t, the observation given to the robot consists of
{xt, ẋt,g, {Oi}Ki=1}, and the robot applies action ut = π(xt, ẋt,g, {Oi}Ki=1). The reward given to
the robot at each step is the negative Euclidean distance to the goal, with an additional penalty of
−100 if the robot collides with an obstacle. Collision checking operates in a finer time-scale of dt/10.
The robot is considered in collision with an obstacle Oi if and only if ‖x− oi‖ ≤ ri. In the training
phase, due to efficiency considerations, collision checking is only done in one randomly sampled
frame out of the 10 frames of each step, and a collision penalty of 1000 is given to the robot if the
robot is in collision with any obstacle at the sampled frame. This sampled reward is the same as the
true reward in expectation. For the sake of simplicity, the dynamics of the system (5) does not change
even if the robot is in collision with the obstacle. However, the large negative reward of collision
should discourage the robot to collide with any obstacles.

Upon environment reset, the initial state of the robot, the goal, and the obstacles are ran-
domly sampled. During training, these quantities are sampled from the following distribu-
tions: x0 ∼ uniform(−0.1, 0.1)2, ẋ0 ∼ uniform(−0.05, 0.05)2, g ∼ uniform(−5, 5)2, K ∼
uniform({0, 1, 2, 3}), and oi ∼ uniform(−5, 5)2, ri ∼ uniform(1, 2) for i = 1, . . . ,K.

D.1.1 The RMPflow Policy

Goal reaching: The goal-reaching policy is parameterized as a metric neural network and a accel-
eration neural network. The input to the networks is the collection of state and goal position, i.e.
{x, ẋ,g}. Both networks are 2-layer neural-nets with 32 hidden units and elu activation functions.
The output layer of the metric network uses tanh activation function to ensure that the metric is
always bounded, which further guarantees collision-free behavior when combined with the collision
avoidance policy below. To produce a positive semi-definite metric, the output of the metric network
is reshaped to a square matrix A ∈ R2×2 and the output metric is computed as Mg = AA>.

Collision avoidance: We use the barrier-type collision avoidance policy [3, Section 5.1] to provide
safety guarantee of the robot. The policy operates on the distance space between the robot and each
obstacle, zi = d(x,Oi) = ‖x− oi‖2 − ri. The collision avoidance policy [3] is given by,

Moi =
0.2 + 2min(0, żi)żi

z4
, aoi =

4× 10−5

z2i (0.2 + 2min(0, żi)żi)
+ 2

(0.2 + min(0, żi)żi)ż
2
i

(0.2 + 2min(0, żi)żi)zi
.

In practice, the metric and acceleration outputs are clipped at a large value to avoid numerical issues
such overflow and ill-conditioned metrics.

Damping: To ensure the numerical stability of the resolve step, a damping policy is provided
so that the metric at the root node is always positive-definite. The damping policy is given by
Md(x, ẋ) ≡ 0.1I , and ad(x, ẋ) = −ẋ.

D.1.2 The Neural-net Policy

The neural-net policy directly parameterize ut = πθ(xt, ẋt,g, {Oi}Ki=1). We use a feed-forward
neural network with 2 hidden layers of size 64 with tanh activation functions. To ensure that the
observation dimension is kept fixed among environments with different number of obstacles, place
holder obstacles with radius −1 are provided.

D.2 Learning Setup

Algorithm: We adopt the adaptive implementation of the natural policy gradient in [4, Appendix
E]. For each deterministic policy described above, we construct a Gaussian policy by setting the
deterministic policy as the mean of the Gaussian and setting the covariance to have a diagonal
structure. Both the mean and the covaraince are optimized during the training. In each iteration, the
Gaussian policy is rolled out in the environment to collect trajectory data and then the GAE policy
gradient estimate [19] is computed, where the value function estimate is a fully connected neural
network with two hidden layers (of size 256 and 128, respectively) and tanh activation functions
and it is trained on-policy using Monte-Carlo estimates of the cumulative rewards after each policy
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update. This GAE gradient estimate is then used as the first-order direction for the natural policy
gradient update.

Hyperparameters: We tested a variety of hyperparameters for the neural-net policy: natural policy
gradient of step size ranging in {0.01, 0.05, 0.1, 0.2} and initial standard deviation for the Gaussian
policy in {e−1, 1, e}. The cumulative reward for the policy at each training iteration and the best
policy upon each iteration for each of the hyperparameter are shown in Figure 2. We chose the
best performing set of hyperparameters, with step size of 0.05 and initial standard deviation of 2.72
(nn-1.0-0.05), for the experiments in the main text. The RMPflow policy (rmp-0.0-0.1) achieves
significant higher reward throughout learning compared to the neural-net policy. (We tried training
the RMPflow policy using the default hyperparameter in the codes of [4], which resulted into the
training curve shown in the figure. As it significantly outperforms the neural-net policies, we did not
search additional hyperparameters for the RMPflow policy to further improve its performance).

11



0 100 200 300 400
Iteration

5000

4000

3000

2000

1000

M
ea

nS
um

Of
Re

wa
rd

s

nn--1.0-0.01
nn--1.0-0.05
nn--1.0-0.1
nn--1.0-0.2
nn-0.0-0.01
nn-0.0-0.05
nn-0.0-0.1
nn-0.0-0.2
nn-1.0-0.01
nn-1.0-0.05
nn-1.0-0.1
nn-1.0-0.2
rmp-0.0-0.1

(a) Sum of reward of the policy at each iteration
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(b) Sum of reward of the best policy upon each iteration

Figure 2: The cumulative reward of (a) the policy at each training iteration and (b) the best policy in
each iteration. The curve shows the median over 8 random seeds while the shaded area is given by
the first and third quantiles. The legend shows the method (RMPflow or neural-net policy), the initial
log standard deviation for the Gaussian policies, and the learning rate for natural gradient descent.
The neural-net policy with initial standard deviation of 2.72, and learning of 0.05 (nn-1.0-0.05
in the figures) is chosen for the experiments in the main text. The RMPflow policy (rmp-0.0-0.1)
achieves significant higher reward throughout learning compared to the neural-net policy.
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