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Abstract

We present a reinforcement learning-based solution to autonomously race on
a miniature race car platform. We show that a policy that is trained purely in
simulation using a simple vehicle model, including model randomization, can be
successfully transferred to the real robotic setup. If a combination of our novel
policy output regularization approach and a lifted action space is used, it enables
smooth actions but still aggressive race car driving. Refining the policy with
three hours of real-world interaction data allows the reinforcement learning policy
to achieve lap times similar to a state of the art MPC controller while reducing
track constraint violations by 50%. Videos of the experiments can be found at
https://youtu.be/Z2A82AkT7GI.

1 Introduction
Autonomous racing is a quickly growing sub-field of autonomous driving where the goal is to drive
around a race track as fast as possible. The control policy must be able to perform strategic planning,
so that the car is always at the right place on the track with the correct speed. At the same time, the
policy has to control the vehicle at the limit of handling, where the behavior of the model is highly
nonlinear and hard to predict. Currently, the most advanced methods use model-based predictive
control techniques [1, 2, 3, 4]. Several groups showed that the performance of such methods can be
increased by the use of data to improve the prediction model [5, 6]. Direct learning of a policy that can
control an autonomous race car is not much explored, an exception being [7], where a pixel-to-action
policy is trained through imitation learning. Compared to model-based approaches, Reinforcement
Learning (RL) does not require an accurate vehicle model or a well tuned reward function. Instead,
the RL agent learns to race by interacting with the environment using high level rewards. This has
been demonstrated on real robots for several robotics applications [8, 9, 10, 11, 12, 13, 14, 15, 16, 17],
in areas like robot manipulation, quadcopters, and wheeled robots. When a model of the system is
available, the RL agent can be trained in simulation with the purpose to transfer the learned policy on
a robotic system [18] using the Sim-to-Real approach. However, the RL agent learns to interact with
a limited representation of the environment and is prone to over-fitting with respect to the simulation.
Tools such as domain or model randomization [18, 9] often drastically help the sim-to-real transfer,
by randomizing the observation and the model in the simulator. In [19, 20, 21] it was shown that
sim-to-real works for autonomous driving, however, their main challenge was to close the vision
domain gap, whereas in our autonomous racing case the domain gap in the vehicle model is the main
challenge.

Regularization is an essential ingredient guiding the learning process, shaping the corresponding
policy, and incorporating domain knowledge in the RL problem. In RL, the entropy maximization
regularizer [22] is commonly used to encourage exploration. Recently, the effect of other regu-
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larization strategies popular in deep learning has been studied in [23]. This paper shows that a
policy learned with an off-the-shelf actor critic method can be generalized to the real system, even
if the agent is only trained in simulation with a simple vehicle model. We achieve this by using a
well-suited state and action space in combination with model randomization, and by incorporating a
novel policy output regularization technique, motivated by control theory. This regularizer, combined
with input-lifting techniques where the actions are the changes in the physical inputs, significantly
improves the sim-to-real transfer. Finally, a refinement in the policy through interaction with the
real environment reaches performance comparable to that of a state of the art predictive controller in
terms of lap time, while achieving 50% less constraint violations.

2 Autonomous Racing
We now introduce the experimental setup, and define the related Markov Decision Process (MDP).
The experimental platform consists of miniature 1:43 remote controlled Kyosho dnano cars. The cars
are controlled via Bluetooth by a remote PC and the position, heading and velocities are estimated by
an overhead camera system at 100Hz. Due to their small size and high relative speeds ( 3m/s), the
cars are challenging to control because their behavior is highly non-linear and stochastic, making it
difficult to model and predict the dynamics accurately.

2.1 State Space and Action Space
We are interested in finding an action space where smoothness can be enforced in the actions, and a
state space where discontinuities in the (action) value function and in the policy can be avoided. We
therefore represent the state in a curvilinear coordinate system [24] (Frenet frame), which transforms
the position and heading relative to a reference path, in our case the center line of the race track.
More specifically, we have that p is the progress along the track, n is the deviation from the reference
path, and µ the heading relative to the path. Following standard vehicle dynamics, we also consider
the longitudinal and lateral velocity in the vehicle’s frame, vx and vy respectively, and the yaw rate ω
as states. The physical control inputs to our car are the duty cycle to the rear wheel drive motor d,
and the steering angle δ. Since jerky inputs could damage the actuators and harm the performance,
we lift our inputs and add d and δ to the states and consider the rate of change of the physical inputs
drate and δrate as our actions. In summary, our state is given by s = [p, n, µ, vx, vy, ω, d, δ], and
the actions by a = [drate, δrate]. This approach allows to efficiently penalize jerky inputs to our
autonomous car. We did not experience a noticeable slow down in learning because of this lifting.

2.2 Reward Function
The goal in racing is to drive as quickly as possible, while not violating the track limits. We formulate
this objective using a dense reward function that penalizes violating two constraints. The first is
a track constraint which is triggered if the deviation to the center line is larger than half the track
width |nt+1| ≤ wtr/2, which was implemented by adding a safety margin to the actual track width.
The second constraint is added to facilitate the sim-to-real transfer. When driving at the limit of
handling, combined slip of the tires is important, but it is not modeled in our simulator. We include
a penalization in the reward, using the tire ellipse constraint described in [25]. To model the lap
time minimization objective, we use an incremental progress reward pt+1 − pt, where the agent
is rewarded to drive as far as possible with respect to the center line. This reward is a good dense
approximation of the sparse minimum lap time reward. The combined reward function rt is defined
as −c if constraints violated, and pt+1 − pt otherwise. The proposed function rewards fast driving
and penalizes deviating from the track or exploring poorly modelled state space regions.

3 Sim-to-Real
We formulate our problem as an episodic RL problem, where an episode is either terminated if
the car violates the track constraints for more than double the track width or if it lasts for 600
time steps (equivalent to 6 s of driving). Each episode starts at a random initial state and uses
relative short episodes, to improve exploration [26]. We use Soft Actor Critic (SAC) [27] due to
its superior performance compared to other state of the art RL methods on our setup, and due to
its off-policy capabilities which we will exploit in Section C. The SAC implementation is based
on Stable Baselines [28], and we implement our simulator, explained in Section A, as an OpenAI
Gym environment [29]. The control policy and (action) value functions, are implemented as fully
connected neural networks with two hidden layers and 256 neurons per layer. We use a learning rate
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of 3 · 10−4, a batch size of 512, a replay buffer of length 106, and a discount factor of 0.99. We run
SAC at every time step of the simulation and train for 1.8 · 107 time steps. We run the training on a
single desktop computer using the CPU (Intel i9-9900K), which takes about 36 hours to complete.

3.1 Simulator and Model Randomization

Our simulator is based on the dynamic bicycle model proposed in [1], using Pacejka tire models
[30] to model the interaction with the ground. However, this simple vehicle model is over-optimistic
and does not capture the stochasticity of the real cars. Therefore, we use model randomization to
train a policy that can transfer to the real system, by reducing the reality gap. We propose to use
a multiplicative uncertainty model of the form ṡ = f(s, a)(1 + ε), where f(s, a) is the nominal
dynamic bicycle model and ε the uncertainty. It captures well the effect of increased uncertainty
in case of rapid changes in the system. Since the position and orientation are only the integration
of the velocities, we consider only uncertainty on the velocity states. We model this uncertainty as
a uniform distribution, where the bounds are determined from real driving data recorded using a
benchmark MPC and include 80% of all recorded errors. Including all errors, or overstating the noise
level, would result in over-conservative policies.

3.2 Policy Regularization
Regularizing action sequences is motivated by avoiding excessive and jerky inputs, which can damage
actuators and degrade performance. Furthermore, excitation of a system with high-frequency inputs
often results in difficult to model behaviors (e.g. load transfer in driving). In model-based control
approaches it is common to consider an input cost that penalizes the control inputs. In RL-based
approaches such regularizers are less common, but have recently attracted some interest [31].

One standard approach to regularize the inputs is to augment the reward function, and to add a
quadratic cost on the applied actions, which we call reward action regularization. Another common
approach is to use standard regularizers from deep learning, the most popular one being the L2 penalty
on the policy weights, which we call from now on policy weight regularization. Both approaches have
some disadvantages; The reward action regularization approach results in slow learning, because the
RL agent has to learn if a low reward is caused by non promising states or too excessive inputs. The
policy weight regularization approach is tailored to reduce over-fitting to the training data but it is not
effective at achieving our goal of smooth actions.

3.2.1 Policy Output Regularization
Given these insights we propose a novel regularization approach, policy output regularization, which
directly regularizes the policy output without slowing down learning by using gradient information
in the policy update step. The goal is to penalize high values of the actions applied on the first step.
This is achieved by adding a quadratic term to the SAC policy update step, which becomes

∇θ
1

|B|
∑
st∈B

− [Qφ (st, πθ(st)) + αH (πθ(st))] + E[πθ(st)]TME[πθ(st)], (1)

while the (action) value function update steps remain unchanged. Moreover, through the choice of
the positive semidefinite matrix M , the regularization can be tuned separately for each action.

3.3 Sim-to-Real Experimental Results
The performance on the real platform of the policies with different regularizers trained in simulation is
shown in Figure 1. We compare the mean lap time and time outside of the track constraints achieved
by the most successful learned policies (all including model randomization), and by a benchmark
MPC controller [32]. Large lap times indicate collisions with the track walls, while lower lap times
and constraint violations correspond to better performance. Using vanilla SAC1 results in a 28%
higher mean lap time, and 40% higher constraint violations, compared to the MPC benchmark policy.
Policy weight regularization brings an improvement, but the best performance is achieved by the
policy trained with policy output regularization. It achieves a performance comparable to that of the
MPC controller we use as benchmark, with a 30% improvement in constraint violations, and only 8%
slower lap times on average. While the performance achieved with policy output regularization is not
far from the performance of the MPC controller, it cannot match the peak performance of the MPC.

1What we call SAC in our results can be considered “normal" sim-to-real with model randomization
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Avg.
Lap Time[s]

Avg. Time Out
of Constraints[s]

SAC 13.53 2.15
SAC + π weight reg 13.18 1.79
SAC + π output reg 11.43 1.07
MPC 10.57 1.53
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Figure 1: Performance of different policies trained in simulation.

4 Policy Refinement on the Car
To further refine the learned policy, while avoiding learning from scratch, we introduce interaction
with the real physical system. We propose an approach, where the current policy is controlling the car
at 100Hz. At the same time we record the driving data and add it to a replay buffer which we use for
off-policy updates using our policy output regularized-SAC method. SAC is running as a secondary
task on the same computer, updating its policy and (action) value function based on the replay buffer.
After 100 steps of SAC ( 2.5s), the controller policy is updated. Thus, we use the off-policy capability
of SAC to have an approach that constantly updates the policy, while generating data that is close to
on-policy which facilitates learning. Both the control loop and the SAC loop run on a laptop with the
low power Intel i7-10510U CPU.
4.1 Policy Refinement Experimental Results
We start with the sim-to-real policy that can already drive and is less damaging to the robotic platform
than a random policy. We show the learning performance in Figure 2, where each data-point is the
average of the last 12 minutes of driving (the interval between changing the car batteries). Figure 2
shows a performance deterioration at the beginning of the learning phase, followed by a recovery, and
a drastic improvement by the end of the three-hour interaction with the real car. Both the lap time
and the constraints violation benefit from the policy refinement, as shown in Figure 3. The policy
refinement reduced the mean lap time achieved by sim-to-real by 0.42 s, achieving 11.01 s per lap,
and the constraint violations by 0.63 s, achieving 0.44 s per lap. This brings the refined policy close
to the state-of-the-art MPC method in terms of lap time, while reducing the number of constraint
violations by 71%. Interestingly, the RL agent converged at a different type of solution than the
hand-tuned MPC, emphasizing consistency and low constraint violations over raw peak lap times.
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Figure 2: Performance during policy re-
finement.
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Figure 3: Performance of the policy re-
fined on the car.

5 Conclusion
In this work we successfully applied the RL algorithm SAC to the autonomous racing problem
on a miniature race track. Model randomization and policy output regularization strategy enable
sim-to-real with good performance on the racing platform. We further demonstrate a performance
improvement of the policy trained in simulation by applying the same algorithm to the real car
while it drives around the track. For this purpose an asynchronous strategy is adopted for storing
and sampling driven trajectories to use for training. The achieved performance on the platform is
comparable to that achieved by a state of the art model-based controller in terms of lap time, and
shows an over three-fold improvement with respect to track constraints violations.
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A Simulator and Model Randomization

The uniform distributions we use to randomize the simulated dynamics are εvx = U(−1.5, 1.5),
εvy = U(−2.5, 2.5) , and εω = U(−2.0, 2.0). To qualitatively demonstrate the effect of our model
randomization technique, we estimate the tire forces from state-action sequences, and compare these
force estimates obtained from experimental and simulation sequences. Figure 4 on the left shows
the front wheel force estimates versus the slip angle when driving the real car as well as the nominal
Pacejka tire model used in our simulator for reference. It is clearly visible that the real platform has a
considerable degree of uncertainty, which makes model randomization a simple but necessary tool to
bridge the sim-to-real gap. The force estimate of our model randomization approach is shown Figure
4 on the right. We see that the uncertainty we use in our simulator resembles the one appearing in the
real recorded data.
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Figure 4: Estimated tire forces vs Pacejka tyre model, real measurements left and noisy simulation
right, both using our trained sim-to-real policy.

B Policy Output Regularization

In order to achieve smooth actions, we propose a novel regularization approach, policy output
regularization, which directly regularizes the policy output without slowing down learning by using
gradient information in the policy update step. More precisely, we try to find a policy that minimizes
the following objective, where M is a positive semidefinite matrix,

π∗M (s0) = argmax
π

− E[π(s0)]TME[π(s0)] + E
τ∼π

[ ∞∑
t=0

γt
(
R(st, at, st+1) + αH (π(st))

)]
.

Compared to SAC, we only add the first quadratic term that penalizes high values of the actions
applied on the first time step. Through the choice of M , the regularization can be tuned independently
for each action. We can derive the regularized action value function as

QπM (s0, a0) = −aT0Ma0 + E
τ∼π

[ ∞∑
t=0

γtR(st, at, st+1) + α

∞∑
t=1

γtH (π(st))

]
(2)

QπM (s0, a0) = −aT0Ma0 +Qπ(s0, a0), (3)

where Qπ is the standard SAC action value function. Analogously to the standard SAC policy
gradient update, the update of the regularized policy is

∇θ
1

|B|
∑
st∈B

− [QM,φ (st, πθ(st)) + αH (πθ(st))] . (4)

Equation (3) shows a tight relation between the standard action value function Qπ and the regularized
version QπM . Given this relation, the policy loss (4) can be rewritten as

∇θ
1

|B|
∑
st∈B

− [Qφ (st, πθ(st)) + αH (πθ(st))] + E[πθ(st)]TME[πθ(st)]. (5)

Therefore, to train a regularized policy, we can use the standard SAC algorithm steps to learn the Qπ
function and add a simple quadratic term in the policy gradient step.

Note that this regularizer can be used without input lifting. For our system and other robotic systems,
however, the combination of considering input rates as actions and regularizing the policy output is
preferable, since this approach does not penalize physical inputs but the rate at which they change.
Therefore, a constant steering or the use of a high torque when holding a heavy object with a robot
arm is not penalized, but a jerky steering or torque is.

B.1 Regularization Comparison

To compare the different regularization methods we train four different policies, (i) vanilla SAC,
(ii) SAC with reward action regularization (4) (M̃ = diag(0.005, 0.001)), (iii) SAC with policy
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SAC
SAC + Reward

Action Reg.
SAC + Policy
Weights Reg.

SAC + Policy
Output Reg.

MPC

Lap Time [s] 10.0 11.3 9.8 9.8 8.7
Con. Viol. [s×10−2] 3.6 15.6 9.0 1.7 8.6
d2[10−1] 3.4 2.1 3.5 3.0 5.8
δ2[rad2×10−2] 4.1 4.0 3.9 3.9 5.5
ḋ2[s−2×101] 4.6 0.8 4.0 1.3 3.0
δ̇2[ rad

2

s2 ] 2.3 1.9 1.7 1.8 1.7
d̈2[s−4×104] 44.4 1.6 30.3 4.9 9.5
δ̈2[ rad

2

s4 ×103] 21.8 15.8 9.4 11.0 2.4

Table 1: Comparison of action smoothness metrics of different policies
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Figure 5: Comparison of dc and δ of different policies over one lap.

weight regularization (L2 penalty 10−4), and (iv) our proposed method SAC with policy output
regularization (M = diag(50, 10)). Finally we compare the results with the state of the art MPC
method [1]. All five methods are implemented in the same simulation environment with the model
randomization technique explained in Section A. In Table 1 we can see the results, where we show our
two main driving objectives, lap time and constraint violation. The latter shows how many seconds
the car is closer than 2 cm to the wall per lap. Since the goal of this study is also to evaluate the policy
regularizers, we report the mean of the squared physical inputs (d, δ), and their squared first (ḋ, δ̇)
and second derivative (d̈, δ̈). We can see that the MPC has the lowest lap time, but the second highest
number of constraint violations. The four RL based methods are significantly slower, with method (ii)
having the highest lap time, while also learning very slowly. The number of constraint violation of the
4 methods spans a large range, again with (ii) showing the worst performance. However, method (i)
and especially our proposed method (iv) show significantly less constraint violations compared to the
MPC controller. Method (iii) stands in between with the same lap time as (iv) but higher constraint
violations. When comparing the smoothness metrics, we can mainly investigate the second order
derivative, where we can see that vanilla SAC (i) is the worst performing, and the RL methods with
additional regularization clearly generate smoother inputs. This is also shown in Figure 5, where
SAC has clearly the most jittery actions. Method (ii) achieves a smooth duty cycle by driving slow,
but has only a slightly smoother steering than (i). Method (iii) has a similar pattern as the MPC which
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is desired, but the smoothness scores are 3 times higher, which is problematic for the sim-to-real
transfer. Finally, method (iv) has smooth duty cycle, but aggressive steering. Even though this is a
strategy different than the MPC, it allows for a successful real-to-sim transfer. We believe that the RL
agent has learned that a fast, aggressive steering that corrects errors quickly, coupled with a relatively
smooth duty cycle input works well. The input trajectories of our proposed method (iv) in Figure 5
look visibly better than the other RL based methods.

C Policy Refinement Setup

Figure 6: Diagram of the online reinforcement learning architecture

We perform the experimental policy refinement and show that this approach can improve the au-
tonomous racing policy, by updating the policy purely data-driven. More precisely, we interact with
the real race car for three hours, which is only 6% of our simulation training. More importantly, we
start with a policy that can already drive and is less damaging to the robotic platform than an initial
random policy. Three hours of driving corresponds roughly to one million time steps, 450’000 SAC
updates and 4’500 different polices.
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