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Abstract

This paper introduces the Differentiable SLAM Network (SLAM-net) that encodes
a particle filter based SLAM algorithm in a differentiable computation graph, and
learns task-oriented neural network models by backpropagating through the SLAM
algorithm. Because of its ability to learn task-oriented models, differentiable
SLAM can potentially overcome a number of important limitations of traditional
SLAM methods, such as dynamic environments, sparse visual features, maps that
allow downstream path planning or semantic tasks. Preliminary results in simulated
indoor environments show a strong performance for SLAM-net, both for visual
localization and downstream visual navigation. Our navigation architecture with
SLAM-net improves the state-of-the-art for the Habitat PointNav Challenge 2020
task by a large margin (37% to 64% success). For an extension of this work visit
the project website: http://sites.google.com/view/slamnet

1 Introduction

Simultaneous Localization and Mapping (SLAM) is a crucial component of an autonomous navigation
system. However, traditional SLAM methods have limitations in a number of aspects that may impact
downstream navigation [5; 24; 7]. For example, feature extraction and association may fail due to
featureless walls, noisy sensors or low frame rate; relocalization and loop closure could be difficult due
to environmental changes and repetitive features; or the map representation may not be appropriate
for the downstream planning task.

This paper introduces the Differentiable SLAM Network (SLAM-net). The key idea is to encode
a SLAM algorithm in a differentiable computation graph and then learn neural network model
components for the SLAM algorithm end-to-end, by backpropagating gradients through the algorithm.
By learning task-oriented models, differentiable SLAM may overcome the limitations of traditional
SLAM, e.g., we may optimize feature extractors for localization or optimize the map representation for
downstream navigation. In this work we instantiate the idea for a particle filter based SLAM algorithm
with occupancy grid map representation, and apply it to indoor localization and navigation. Our
SLAM-net architecture benefits from end-to-end training to learn a robust discriminative observation
model for low quality visual input, for which direct supervision would not be available.

A general framework for robot learning with differentiable algorithms has been proposed in prior
work [20]. Differentiable algorithms have been developed for state estimation [12; 17; 19], map-
ping [11; 21], planning [33; 18; 9; 29; 10; 38] and control [1; 30; 8; 3]. Our differentiable SLAM-net
fills a gap in this literature. Differentiating through SLAM has been proposed by Jatavallabhula et al.
[16] and Tang and Tan [34]; however, the former does not utilize gradients for learning, and the latter
focuses on learning the feature metric representation instead of the whole pipeline.

Learning appears in modern approaches for both SLAM [7] and visual navigation [24]. In the case of
SLAM, most approaches only learn specific modules for specific decoupled learning objectives [35;
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Figure 1: Visual navigation pipeline with the differentiable SLAM-net.

4; 39]. In the case of visual navigation, one line of work replaces the entire navigation pipeline
with a deep neural network [36]. Others propose modular architectures with learned components,
however, they either assume known location [11], known map [20], or they rely on simple visual
odometry [6; 31], which unavoidably accumulates errors over time.

We validate SLAM-nets in preliminary experiments for both visual SLAM and downstream navigation
in previously unseen indoor environments. We use the Habitat simulator [32] with the Gibson
dataset [37], a physics simulator built on scans of real-world apartments. When evaluated for the
localization task, SLAM-net significantly outperforms learned visual odometry as well as the the
popular ORB-SLAM [28]. For downstream visual navigation we adopt a standard navigation pipeline,
similar to to Neural SLAM [6], but using our differentiable SLAM-net module instead of visual
odometry (Fig. 1). Our approach significantly improves the state-of-the-art for the CVPR Habitat
2020 PointNav challenge [13].

2 Differentiable SLAM-nets

The Differentiable SLAM-net architecture is shown in Fig. 2. Inputs are RGB(D) observations ot,
outputs are pose st and optional global map Mt. Internally SLAM-net represents the global map
as a collection of local maps. Local maps are 2D occupancy grids associated with a local-to-global
transformation. We add a local map for each observation, but without knowing the robot pose we do
not know the local-to-global map transformation. Instead, the algorithm maintains a distribution over
the unknown robot trajectory using particle filtering. This algorithm is similar to FastSLAM [25; 26].
Our differentiable implementation is built on PF-nets [19].

Algorithm. A particle filter maintains K weighted particle, where each particle represents a past
trajectory s0:t of 2D poses and 1D orientations. At t = 0 all particle trajectories are set to the origin;
particle weights are constant, and the local map collection is empty. In each time step a mapping
model predicts a local occupancy map from the input observation, mt = fmap

✓ (ot), and it is added
to the collection. A probabilistic transition model estimates the relative motion given the last two
inputs, �skt ⇠ f trans

✓ (ot, ot�1, at�1). Each particle trajectory k is extended using samples from the
transition model. Particle weights are then updated using an observation model that estimate the
observation likelihood, logwk

t = logwk
t�1+log p(ot|o1:t�1, sk1:t). We approximate the likelihood by

learned pairwise compatibility estimates that intuitively measure if two local maps were compatible
if the particle trajectory was correct. Finally, a single pose estimate is output by taking the weighted
sum of trajectory particles; and a global map is output by combining the collection of local grid maps
along the mean trajectory estimation using simple 2D image transformations.

Differentiability. The key feature of SLAM-net is that it is differentiable so that its models can be
trained end-to-end with gradient descent. Specifically, the mapping, transition and observation models
of SLAM-net are neural networks, which can be learned together optimizing for the end-objective
of localization accuracy and/or global map quality. To make the algorithm differentiable we use the
reparameterization trick [22] to differentiate through samples from the transition model; and we use
spatial transformers [15] for differentiable map transformations. The rest of the operations of the
algorithm, as presented, are already differentiable. While not used in our experiments, differentiable
particle resampling could be incorporated from prior work [19; 40]. Further, to make use of the
differentiability of the SLAM algorithm for learning with limited GPU memory, the design choices
on the map representation and the formulation of the observation model are important.

Transition model. The transition model is a CNN that takes in the concatenated current and last
depth observations (and optionally the last robot action), and outputs parameters of a Gaussian Mixture
Model with separate learned means and variances for the relative 2D pose and 1D orientation. The
model is trained to maximize the log-likelihood of true relative poses along the training trajectories.
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Figure 2: Differentiable SLAM-net. A global grid map is maintained by a collection of learned local
grid maps. The trajectory is tracked by a particle filter. Particles represent trajectories and they are
updated with learned neural network models (mapping, transition, and observation models).

Mapping model. The mapping model is a structured CNN with depth input and local map output.
Local maps are N⇥N grids with 16+1 channels. Optionally, one channel can be supervised to predict
local occupancy, i.e., the probability of the area in front of the robot being occupied. Other channels
are latent, with no associated meaning, and are trained jointly with the observation model. For the
occupancy supervision we use ground-truth maps and a pixel-wise classification loss.

Observation model. We learn a discriminative observation model that estimates the observation like-
lihood by comparing pairs of local maps, log p(ot|o1:t�1, sk1:t) ⇡

P
⌧2T fobs

✓ (mt, skt ,mt�⌧ , skt�⌧ ).
Here fobs

✓ is a CNN that takes in two local maps and outputs a “compatibility” value, intuitively,
measuring the extent to which the maps capture the same area. For each comparison mt�⌧ is first
transformed to the viewpoint of the current local map mt given their relative pose in the particle
trajectory, skt�⌧ and skt . The two maps are then concatenated and fed to the CNN. We sum the
pairwise map compatibly values along the trajectory for past steps T . To limit computation we only
consider the “most relevant” pairs in T . During training we pick the last 4–8 steps; during inference
we dynamically choose 8 steps based on the largest overlapping view area (estimated using simple
geometry). The algorithm estimates observation likelihoods for all particles this way, and updates the
particle weights after normalization across particles.

Training. The training data consists of image-pose pair trajectories, and optionally, ground-truth
occupancy maps for the mapping model. The end-to-end training loss is the sum of Huber losses for
the 2D pose error and 1D orientation error. We train in multiple stages: pre-train a mapping module
to predict occupancy; train an observation model in a low-noise setting (ground-truth transitions plus
a small additive Gaussian noise, training for the end-objective); train a transition model separately;
finally fine-tune all components jointly end-to-end. During training we use short trajectories (4-8
steps) and K = 32 particles without resampling. During evaluation we use long trajectories (up to
500 steps) and K = 128..256 particles with resampling.

3 Experiments

We evaluate SLAM-net for both visual localization and navigation in the Habitat environment [32].
We use the Habitat PointNav Challenge 2020 task where a robot navigates to goals in previously
unseen apartments using noisy RGB-D observations. The goal is defined by coordinates relative to
the initial pose, but the robot location is unknown thereafter, and discrete robot actions generate noisy
motion. Navigation is successful if the robot takes a dedicated stop action less than 0.36 meters from
the goal. Note that this success criteria places high importance on state estimation accuracy.

Localization. We split the Gibson data to 72 scenes for training (500 randomized trajectories
each), 7 scenes for validation, 7 scenes for testing. For evaluation we generate three sets of 105
trajectories: using a shortest-path expert (traj_expert), the shortest-path expert mixed with random
actions (traj_exp_rand); and our navigation pipeline described later (traj_nav). We report success
rate (SR) that measures the percentage of the episodes where the final pose error is below 0.36 meters;
and root-mean-square-error (RMSE) which measures the absolute trajectory error as defined in [14].
Estimated trajectories are aligned with the ground-truth at the beginning of each episode.
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traj_expert traj_exp_rand traj_nav
Method SR" RMSE# SR" RMSE# SR" RMSE#

SLAM-net (ours) 83.8% 0.16m 62.9% 0.28m 77.1% 0.19m
Learned Visual Odometry 60.0% 0.26m 24.8% 0.63m 30.5% 0.47m
ORB-SLAM [27] 3.8% 1.39m 0.0% 3.59m 0.0% 3.54m
Blind baseline 16.2% 0.80m 1.0% 4.13m 3.8% 1.5m

Table 1: Localization results.

Pose est. method SR" SPL"

SLAM-net (ours) 65.7% 0.38
Visual odometry 32.4% 0.19
Ground-truth 90.7% 0.56

Table 2: Navigation results.

Rank Method SR" SPL"

1 SLAM-net (ours) 64.5% 0.38
2 VO 37.3% 0.27
3 OccupancyAnticipation 29.0% 0.22

Table 3: Habitat Challenge 2020 leaderboard [13].

Results are in Table 1. We compare with learned visual odometry, i.e., the transition model of
SLAM-net used in isolation; the classic ORB-SLAM [27] with RGB-D input; and a blind baseline
that accumulates the nominal motion for actions but ignores observations. We find that SLAM-
net outperforms the other methods across all datasets by a large margin. ORB-SLAM performs
particularly poorly. We believe this is due to the combined effects of rapid turns, sparse visual
features, observation noise, and low frame rate. Indeed, if we remove noise and increase the frame
rate ORB-SLAM performs well (up to 90.4%). Detailed results are in the Appendix. In an additional
ablation study we found that joint finetuning is useful (77.1% vs. 66.7% without finetuning); it is
possible to use only latent or only occupancy channels in local maps (70.5% latent only, 75.2%
occupancy only, 77.1% both); and increasing the number of particles has diminishing benefit (60.0%
for K=8, 72.4% for K=32, 77.1% for K=128, 82.9% for K=512).

Navigation. We integrate SLAM-net into the navigation pipeline shown in Fig. 1. SLAM-net
predicts the robot pose and a global occupancy map in each time step. The map and pose are fed to a
2D path planner that plans a path to the goal. We choose a weighted variant of the D* algorithm [23]
with costs that penalize moving near obstacles. The planned path is tracked by a simple controller
that chooses to turn or move forward aiming for the furthest straight-line traversable point along the
path. In addition we hard-code an initial 370�+ turn and a collision recovery behavior, where an
obstacle is added to the map and the robot turns around and takes a step back.

Results are in Table 2. We report success rates (SR) and success weighted path length (SPL)
defined in [2]. We test different methods for estimating the robot pose, while keeping the rest
of the architecture, including the learned map prediction model, fixed. Performance with ground-
truth localization is strong, which validates the rest of our navigation architecture and serves as
an upper bound for SLAM. Performance drops significantly for visual odometry. Note that our
navigation architecture with visual odometry is similar to that of Neural SLAM [6] and Occupancy
Anticipation [31], the winning entries to the 2019 and 2020 PointNav challenges. In comparison,
SLAM-net achieves a much stronger performance.

We have also submitted our approach to be evaluated on a closed test set. Leaderboard results are in
Table 3. SLAM-net achieves 64.5%success, significantly improving over the SOTA (VO, 37.3%) and
the 2020 challenge winner (OccupancyAnticipation [31], 29.0%).

4 Conclusion

Differentiable SLAM opens up opportunity for a wide range of interesting applications beyond
point-goal navigation. For example, one could learn to relocalize in dynamic environments with
large difference between the time of mapping and localization; learn more robust features for low
quality observations; or learn task oriented semantic map representations for downstream task, such
as semantic navigation or visual question answering. In ongoing work we successfully trained
SLAM-net with RGB only input, and transferred trained models to new datasets. Extended results
and an Appendix is available on the project website: http://sites.google.com/view/slamnet
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