
Learning Cross-Domain Correspondence for Control
with Dynamics Cycle-Consistency

Qiang Zhang∗
Shanghai Jiao Tong University

Shanghai, 200240
zhangqiang2016@sjtu.edu.cn

Tete Xiao
UC Berkeley

Berkeley, CA 94720
txiao@eecs.berkeley.edu

Alexei A. Efros
UC Berkeley

Berkeley, CA 94720
efros@eecs.berkeley.edu

Lerrel Pinto
New York University
New York, NY 10003
lerrel@cs.nyu.edu

Xiaolong Wang
UC San Diego

San Diego, CA 92093
xiw012@ucsd.edu

Abstract

At the heart of many robotics problems is the challenge of learning correspondences
across domains. For instance, imitation learning requires obtaining correspondence
between humans and robots; sim-to-real requires correspondence between physics
simulators and real hardware; transfer learning requires correspondences between
different robot environments. In this paper, we propose to learn correspondence
across such domains emphasizing on differing modalities (vision and internal
state), physics parameters (mass and friction), and morphologies (number of limbs).
Importantly, correspondences are learned using unpaired and randomly collected
data from the two domains. We propose dynamics cycles that align dynamic
robotic behavior across two domains using a cycle consistency constraint. Once
this correspondence is found, we can directly transfer the policy trained on one
domain to the other, without needing any additional fine-tuning on the second
domain. We perform experiments across a variety of problem domains, both
in simulation and on real robots. Our framework is able to align uncalibrated
monocular video of a real robot arm to dynamic state-action trajectories of a
simulated arm without paired data. Video demonstrations of our results are available
at :https://sites.google.com/view/cycledynamics

1 Related work
Learning invariant representations. To find cross-domain alignment, researchers have proposed to
learn representations which are invariant to the changes unrelated to downstream tasks [Tobin et al.,
2017, Peng et al., 2018, Gupta et al., 2017, Sermanet et al., 2018, Liu et al., 2017b, Pinto et al., 2017,
Sadeghi and Levine, 2016, Yan et al., 2020, Andrychowicz et al., 2018]. To align two domains where
the dynamics are different, Gupta et al. [2017] propose to learn invariant features by pairs of states
from two domains. However, paired data is hard to collect, and the method is limited to state space,
while real-world observations are often based on images [Taylor and Stone, 2009].

Learning translation. Instead of learning invariance, our method is related to works which learn the
mapping across two domains for alignment [Ammar et al., 2015, Joshi and Chowdhary, 2018, Kim
et al., 2019, Smith et al., 2019, Taylor et al., 2007]. Our method can learn correspondence between
simulated and real robot through unpaired and randomly collected trajectories.

∗Work done during Qiang’s internship at UC Berkeley.

NeurIPS 2020 3rd Robot Learning Workshop: Grounding Machine Learning Development in the Real World.

https://sites.google.com/view/cycledynamics

(b) Cross-modality only

𝐺 (𝐷𝑌)

𝐹

𝐺 (𝐷𝑌)

𝐼

domain 𝑋 domain 𝑌

𝐼

dynamics

cycle loss

a𝑡

x𝑡 y𝑡
~

x𝑡 1+ y𝑡 1+
~

u𝑡
~

𝐹(,)y𝑡 u𝑡
~ ~

𝐼

𝐹

𝐼

𝐻 (𝐷𝑈)

domain 𝑋 domain 𝑌

𝑃 (𝐷𝐴)

dynamics

cycle loss

a𝑡

x𝑡 y𝑡
~

x𝑡 1+ y𝑡 1+
~

u𝑡
~

𝐹(,)y𝑡 u𝑡
~ ~

(a) Cross-physics only (c) Joint model

𝐺 (𝐷𝑌)

𝐹

𝐺 (𝐷𝑌)

𝐻 (𝐷𝑈)

domain 𝑋 domain 𝑌

𝑃 (𝐷𝐴)

dynamics

cycle loss

a𝑡

x𝑡 y𝑡
~

x𝑡 1+ y𝑡 1+
~

u𝑡
~

𝐹(,)y𝑡 u𝑡
~ ~

Figure 1: Model framework: (a) Joint model for cross-modality-and-physics alignment; (b) Model
for only cross-modality alignment; (c) Model for only cross-physics alignment. Red arrows indicate
correspondences between actions and blue arrows indicate correspondence between observations.

Cycle-Consistency. Our work is inspired by literature on cycle-consistency [Zhu et al., 2017, Liu
et al., 2017a, Bansal et al., 2018, Hoffman et al., 2017, James et al., 2019, Zhou et al., 2016, Bousmalis
et al., 2018]. However, all these works are restricted on visual alignments, while ours can align agents
cross different dynamics and structures.

2 Introduction
Recently, an emerging line of research focuses on finding correspondences under a realistic problem
setting by learning to translate between two different domains with unpaired data Zhu et al. [2017],
Bansal et al. [2018]. While this translation technique has shown encouraging results in imitation
learning Smith et al. [2019] and sim-to-real transfer James et al. [2019], Hoffman et al. [2017],
it is limited to finding correspondences only in the visual observation space. However, in real-
world applications, besides visual observations, the physics parameters and morphology dynamics
between two domains are often unaligned. Hence, to truly extend correspondence learning to aligning
behaviors, we must go beyond the image space and explicitly incorporate dynamics information.

We aim to learn correspondence across various domains, i.e., input modalities, physics parameters,
and morphology. We formulate the trajectories of domain X and Y as τX

.
= (xt,at,xt+1) and

τY
.
= (yt,ut,yt+1), where x ∈ Rn1 and y ∈ Rn2 are observation representations in domain X

and Y , a ∈ Rm1 and u ∈ Rm2 are action representations in domain X and Y , and t is time step.
Without loss of generality, we assume to learn correspondence from domain X to domain Y .

Suppose that we have observation alignment functions G : X 7→ Y , and action alignment function
H : A 7→ U and its inverse counterpart H−1 : U 7→ A. We define two types of correspondence:

Observation Correspondence, i.e., what the representation of one observation in domain X should
correspond to if it is in domain Y , and vice versa. For example, if X is visual sensing of an agent
while Y is the state (e.g., joint angle) of the same agent, G functions as a state estimator. If X is the
state of one agent while Y is the state of a structurally different agent, such as a Sawyer arm and a
UR5 arm, G aligns the states at a same stage towards a common goal (in the case of robot arms the
position of end effector could be the bridge). We denote two correspondent observations between X
and Y as x⇔ y.

Action Correspondence, i.e., with correspondent initial observations which actions to execute so
that the next observations in two domains remain correspondent. For example, if X and Y are two
environments with different physics parameters, with the initial observations xt, yt and xt ⇔ yt,
after action at is executed in domain X and leads to the next observation xt+1, alignment function
H should find the action ut which leads to next observation yt+1 in domain Y where xt+1 ⇔ yt+1,
and vice versa for H−1. We denote two correspondent actions from X and Y as (xt,at)⇔ (yt,ut).

3 Cycle Dynamics Model

We begin by simply mapping states across domains by adversarial training. Given unpaired samples
{xi} ∈ X , and {yi} ∈ Y , a mapping function G can be learned with a discriminator DY with the
adversarial objective, where G tries to map x onto the distribution of y, while DY tries to distinguish

2

translated samples G(x) against real samples y:
min
G

max
DY

Ladv (G,DY) = Ey∼p(y) [logDY (y)] + Ex∼p(x) [log (1−DY (G(x)))] (1)

The adversarial objective reaches global optimal when the mapping function G can perfectly ground
the translated samples onto the distribution defined by {yi}.
We learn an action mapping function H : A 7→ U which maps actions from domain X to domain Y ,
and model its inverse counterpart H−1 as a function P : U 7→ A with separate parameters. Besides
using two adversarial losses with discriminators DU in Y and DA in X , i.e., Ladv(H,DU) and
Ladv(P,DA), we add cross-domain cycle consistency loss Zhu et al. [2017] into the objective:

min
H,P
Ldom_cyc (H,P) = Ea∼p(a)

[
P (H(a))− a1

]
, (2)

which implies that the translated action should be able to be translated back, i.e., P (H(a)) ≈ a.

Nevertheless, the structure of learnt mapping by adversarial training is loosely constrained. Vanilla
adversarial training may map all samples X to a few samples of Y , which still minimizes the adver-
sarial objective. Adding domain cycle consistency loss does not solve the problem fundamentally: for
example, given two correspondent but unpaired observations, i.e., xt,yt and xt+1,yt+1, G can map
xt to yt+1 and G−1 can still map yt+1 back to xt, which does not violate domain cycle-consistency.

Beyond only relying domain cycle consistency, we exploit the transition dynamics of two domains,
termed as dynamics cycle-consistency. As illustrated in Figure 1(a), we map the observation-action
pair at time step t xt and at from domain X to Y using G and H , then execute the translated
observation and action ỹt and ũt) in domain Y by its transition dynamics TY : Y×U 7→ Y to get the
next observation, which is expected to be correspondent to the next observation from domain X , i.e.,
TY (ỹt, ũt)⇔ xt+1. According to the definition of observation correspondence, TY (ỹt, ũt) should
be the same as G(xt+1), as expressed in the objective:

min
G,H
L(G,H)dyn_cyc = E(xt,at,xt+1)∼p(τX)

[
G(xt+1)− TY (G(xt), H(at))1

]
(3)

One obstacle remains. The transition dynamics TY in Equation 3 is in fact the physical property of
a simulator or the real world, hence it is not differentiable for back-propagation. In consequence,
we train a forward model which takes an observation-action pair as input and predicts the next
observation to approximate the dynamics of the environment. Since we have access to trajectories
from Y , we can directly train the forward model using supervised regression objective:

min
F
Lforward(F) = E(yt,ut,yt+1)∼p(τY)

[
yt+1 − F (yt,ut)1

]
(4)

Note that forward model F is first pre-trained and it is not optimized together with the dynamics
cycle-consistency objective, as otherwise G and F can learn to map everything to zero so that
Ldyn_cyc becomes zero, which leads to trivial solution. Consequently, our full objective is:
Lfull = λ0Ldyn_cyc(G,H) + λ1 (Ladv(H,DU) + Ladv(P,DA) + Ldom_cyc(H,P)) + λ2Ladv(G,DY)

(5)
where λ0,λ1 and λ2 are constants balancing the losses.

There are several different specific application setting for this Cycle Dynamics Model. The first one
is cross-physics (Figure 1(a)) where the observations are in the same modality but some physical
parameters in the two domains are different. The second one is cross-modality (Figure 1(b)) where
we want to align image observation and state observation in a self-supervised way. The third one is
cross-modality–and-physics where both the observations and the dynamics are different, as shown
in Figure 1(c)). This joint model can also be applied with two different morphology agents (cross-
morphology). More detailed task introduction and the optimization strategy can be found in the
Appendix A. Although there are four different settings, we only present the experiment results for
two of them: cross-modality and cross-morphology in this paper.

4 Simulation Experiments
We first test the efficiency of our framework and conduct ablation studies in simulation environments.
We choose MuJoCo physics simulator as our test bed. We model domain X and Y as two different
environments, where input modality and morphology structures of the agents can vary. In the first
part experiment, it is followed cross-modality alignment setting, where only the observation space is
different; In the second part one, it is followed cross-morphology setting, where agent structures in
two domains are different. Environment introduction, dataset collection, model implementation and
the detailed settings can be found in the Appendix B.

3

Tasks L1 Error ↓ RL Score ↑
Random Cycle-GAN Ours Oracle, Y Random, X Cycle-GAN Ours, Y→X Oracle, X

HalfCheetah 2.18 2.07 0.57 6270±123 −289±81 −119±65 1504±256 3689±247

FingerSpin 1.61 1.92 0.23 804±89 0±0 0±0 341±39 765± 68
FetchReach† 0.87 0.94 0.05 100% 0% 0% 92% 100%

Table 1: Evaluation of cross-modality alignment, including L1 error of state estimation, and RL
policy performance on the original domain Y and after transferring to domain X . †: Task successful
rate is reported.

Tasks Oracle, Y Random Cycle-GAN INIT Ours, Y→X
Cheetah 6270±123 −250±59 −43±52 −37±60 2471±382
Swimmer 366±26 −1±4 14±5 −15±3 204±56

Table 2: Cross-morphology. Results on transferring RL policies.

Cross-modality alignment. In this setting, we use RGB images as observations in domain X and
the internal state of agents as observations in domain Y , while keeping physics parameters the same.
G is then essentially a state estimator. We execute random actions without pre-trained policies in
both domains to obtain unpaired training trajectories. We compute L1-distance between the predicted
states and the ground-truth states from simulator X (although we do not use them for training) as an
evaluation metric. We also use RL performance as another metric: we train an RL policy in state
space (domain Y), and test it in image space (domain X) by executing the predicted action based
on estimated states from images. We compare with two baselines: a random projection baseline; a
image-state Cycle-GAN baseline (see Appendix E for details). As shown in Table 1, our approach
performs significantly better than the Cycle-GAN baseline in both L1 error and the RL scores, which
shows the importance of incorporating the dynamics into the cycle.

Cross-morphology alignment. Evaluation on two domains with different morphology. We experi-
ment with two tasks (see Appendix C): (i) domain Y with 2-leg HalfCheetah and domain X with
3-leg HalfCheetah; (ii) domain Y with 3-limb Swimmer and domain X with 4-limb Swimmer. In
this setting, the unpaired trajectories are also randomly sampled and our model learns to align the
observations and actions at the same time. Once the correspondence is found, we can transfer the
RL policies from domain Y to X . We compare to two baselines: one is the Cycle-GAN to perform
both state-state and action-action translations, the other is using our action repetition initialization
strategy before training (INIT, see Appendix C). As shown in Table 2, our approach can still perform
reasonably well without finetuning the policy while the baselines completely fail.

5 Real Robot Experiments
Method Random Smooth

Random G 0.30 0.18
Cycle-GAN (E) 0.18 0.21
Ours (E) 0.025 0.033
Ours (J) 0.031 0.044

Table 3: Real robot results.

We use an xArm robot for the cross-modality alignment task.
The goal is to estimate the simulation states (domain Y) given
the real robot images (domain X), without any paired image-
state data. We do not have access to the internal states of the
real robot. We use an uncalibrated RGB camera to capture
the videos of the robot movements. We collect the real robot
videos by randomly executing end-effector positional control.
We collect random trajectories in xArm simulator. The training set includes 11k triplets (image,
action, next image) of the real robot. We collect two testing sets from the real robot: a) 1,000 samples
of random movement (Table 3, 1st col.), and b) 100 samples of smooth movement (Table 3, 2nd col.).

We conduct experiments using either end-effector position or joint poses (7 joint positions) as
observations in simulation. Note the action is defined by the delta movement of the end-effector,
not the exact position of the end-effector. We measure the L1-distance between the predicted and
ground-truth end-effector position for evaluation. We compared our method with Cycle-GAN baseline
(Appendix E). As shown in Table 3, the results from Cycle-GAN is close to random and our method
with dyanmics cycle-consistency achieves much lower state estimation error. Besides training with
end-effector as observations (Ours (E)), we also use joint poses as observations (Ours (J)) which
increase the difficulty on learning the correspondence. Even so, our results are still much better than
Cycle-GAN with end-effector observations. We also visualize the translation results by rendering the
states in simulation in Appendix F, and observes that our state estimation results are well aligned
with the real robot video.

4

References
H. B. Ammar, E. Eaton, P. Ruvolo, and M. E. Taylor. Unsupervised cross-domain transfer in policy

gradient reinforcement learning via manifold alignment. In Twenty-Ninth AAAI Conference on
Artificial Intelligence, 2015.

M. Andrychowicz, F. Wolski, A. Ray, J. Schneider, R. Fong, P. Welinder, B. McGrew, J. Tobin,
O. P. Abbeel, and W. Zaremba. Hindsight experience replay. In Advances in neural information
processing systems, pages 5048–5058, 2017.

M. Andrychowicz, B. Baker, M. Chociej, R. Jozefowicz, B. McGrew, J. Pachocki, A. Petron,
M. Plappert, G. Powell, A. Ray, et al. Learning dexterous in-hand manipulation. arXiv preprint
arXiv:1808.00177, 2018.

A. Bansal, S. Ma, D. Ramanan, and Y. Sheikh. Recycle-gan: Unsupervised video retargeting. In
Proceedings of the European conference on computer vision (ECCV), pages 119–135, 2018.

K. Bousmalis, A. Irpan, P. Wohlhart, Y. Bai, M. Kelcey, M. Kalakrishnan, L. Downs, J. Ibarz, P. Pastor,
K. Konolige, et al. Using simulation and domain adaptation to improve efficiency of deep robotic
grasping. In 2018 IEEE International Conference on Robotics and Automation (ICRA), pages
4243–4250. IEEE, 2018.

G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba. Openai
gym. arXiv preprint arXiv:1606.01540, 2016.

S. Fujimoto, H. Hoof, and D. Meger. Addressing function approximation error in actor-critic methods.
In International Conference on Machine Learning, pages 1582–1591, 2018.

A. Gupta, C. Devin, Y. Liu, P. Abbeel, and S. Levine. Learning invariant feature spaces to transfer
skills with reinforcement learning. arXiv preprint arXiv:1703.02949, 2017.

J. Hoffman, E. Tzeng, T. Park, J.-Y. Zhu, P. Isola, K. Saenko, A. A. Efros, and T. Darrell. Cycada:
Cycle-consistent adversarial domain adaptation. arXiv preprint arXiv:1711.03213, 2017.

S. James, P. Wohlhart, M. Kalakrishnan, D. Kalashnikov, A. Irpan, J. Ibarz, S. Levine, R. Hadsell,
and K. Bousmalis. Sim-to-real via sim-to-sim: Data-efficient robotic grasping via randomized-to-
canonical adaptation networks. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 12627–12637, 2019.

G. Joshi and G. Chowdhary. Cross-domain transfer in reinforcement learning using target apprentice.
In 2018 IEEE International Conference on Robotics and Automation (ICRA), pages 7525–7532.
IEEE, 2018.

K. H. Kim, Y. Gu, J. Song, S. Zhao, and S. Ermon. Cross domain imitation learning. arXiv preprint
arXiv:1910.00105, 2019.

T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra. Continuous
control with deep reinforcement learning. arXiv preprint arXiv:1509.02971, 2015.

M.-Y. Liu, T. Breuel, and J. Kautz. Unsupervised image-to-image translation networks. In Advances
in neural information processing systems, pages 700–708, 2017a.

Y. Liu, A. Gupta, P. Abbeel, and S. Levine. Imitation from observation: Learning to imitate behaviors
from raw video via context translation. arXiv preprint arXiv:1707.03374, 2017b.

X. B. Peng, M. Andrychowicz, W. Zaremba, and P. Abbeel. Sim-to-real transfer of robotic control
with dynamics randomization. 2018 IEEE International Conference on Robotics and Automation
(ICRA), May 2018.

L. Pinto, M. Andrychowicz, P. Welinder, W. Zaremba, and P. Abbeel. Asymmetric actor critic for
image-based robot learning. arXiv preprint arXiv:1710.06542, 2017.

F. Sadeghi and S. Levine. Cad2rl: Real single-image flight without a single real image. arXiv preprint
arXiv:1611.04201, 2016.

5

P. Sermanet, C. Lynch, Y. Chebotar, J. Hsu, E. Jang, S. Schaal, S. Levine, and G. Brain. Time-
contrastive networks: Self-supervised learning from video. In 2018 IEEE International Conference
on Robotics and Automation (ICRA), pages 1134–1141. IEEE, 2018.

L. Smith, N. Dhawan, M. Zhang, P. Abbeel, and S. Levine. Avid: Learning multi-stage tasks via
pixel-level translation of human videos. arXiv preprint arXiv:1912.04443, 2019.

Y. Tassa, Y. Doron, A. Muldal, T. Erez, Y. Li, D. d. L. Casas, D. Budden, A. Abdolmaleki, J. Merel,
A. Lefrancq, et al. Deepmind control suite. arXiv preprint arXiv:1801.00690, 2018.

M. E. Taylor and P. Stone. Transfer learning for reinforcement learning domains: A survey. Journal
of Machine Learning Research, 10(Jul):1633–1685, 2009.

M. E. Taylor, P. Stone, and Y. Liu. Transfer learning via inter-task mappings for temporal difference
learning. Journal of Machine Learning Research, 8(Sep):2125–2167, 2007.

J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel. Domain randomization for
transferring deep neural networks from simulation to the real world. 2017 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), Sep 2017.

W. Yan, A. Vangipuram, P. Abbeel, and L. Pinto. Learning predictive representations for deformable
objects using contrastive estimation. arXiv preprint arXiv:2003.05436, 2020.

T. Zhou, P. Krahenbuhl, M. Aubry, Q. Huang, and A. A. Efros. Learning dense correspondence via
3d-guided cycle consistency. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 117–126, 2016.

J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros. Unpaired image-to-image translation using cycle-
consistent adversarial networks. In Proceedings of the IEEE international conference on computer
vision, pages 2223–2232, 2017.

6

A Optimization and Tasks

Optimization. We collect unpaired trajectories τX and τY by executing random actions from both
domains. Directly optimizing the full objective end-to-end leads to model collapse, as it involves
joint optimization with multiple neural networks: G and H can easily discover a “short-cut” solution,
where the translated observations and actions are not valid but they can fool the forward model to
optimize the dynamics cycle-consistency objective. Since the forward model is only optimized on
trajectory data τY , thus we first pre-train the forward model and fix its parameters throughout the
following training procedure. We initialize the action mapping function using an algorithm detailed
in the Appendix C.4. We propose to employ alternating training procedure for the full objective:
When we train the observation mapping function G and its auxiliary discriminator DY , we fix the
action mapping function H and P ; then when the action mapping function H and P with DU and
DA are trained, we fix the observation mapping function G. Since the action mapping functions are
reasonably initialized, at the beginning of training procedure the observation mapping function is
optimized. It is grounded on good action mappings, as well as the dynamics of environments by
dynamics cycle consistency, thus it is constrained from learning an arbitrary short cut. Subsequently,
action mapping functions can be further fine-tuned once we obtain a good observation mapping
function (Algorithm 1).

Algorithm 1: Alternatingly Joint Training Algorithm
Input: Domain X: τX = {(xt,at,xt+1)}
Domain Y: τY = {(yt,ut,yt+1)}
// Training Forward Model Stage
train Lforward(F) (Eq. 4) to learn transition dynamics
TY in domain Y;
// Alternatingly Training Stage
for i = 1 to e do

reset λ1, set λ2 = 0; fix weight of G;
for j = 1 to e1 do

using Lfull (Eq. 5) to train model H and P ;
reset λ2, set λ1 = 0; fix weight of H and P ;
for j = 1 to e2 do

using Lfull (Eq. 5) to train model G;
return State alignment model G
Action alignment model H and P

Tasks. Our formation of correspondence
learning is broad and general, and it en-
ables many applications which typically
require intricately designed frameworks
or are hard to solve without paired data.
Specifically, we study the following three
tasks:

The first task is cross-physics alignment,
where domain X and domain Y are two
environments with different physics pa-
rameters but same input modality. As
shown in Figure 1(a), same input modal-
ity indicates that observation correspon-
dence always holds, i.e., xt ≡ yt; dif-
ferent physics parameter indicates that
executing a same action at the same ini-
tial observation in separate environments
results in different next observation. Af-
ter learning correspondences, assuming
we have a policy in domain Y , we can transfer it to domain X by mapping the predicted action of the
policy u from domain Y to X with action mapping function P . The translated action ã can then be
executed in domain X .

The second task is cross-modality alignment, where domain X and domain Y are different sensing
(observation) modality of the same agent, which implies that action correspondence between two
domains always hold (see Figure 1(b)). In other words, H and P are both identity mapping, and
at ≡ ut. Thus we can set γ = 0 in Eq. 5 in training. A predominant choice is X being image while
Y being state, where G essentially learns to perform state estimation. Moreover, we can execute a
policy which is originally trained on state space in image space, as the input xt in image space can
be translated by G before fed into the policy based on state space, yielding a predicted action ut,
which can be directly executed in domain X .

Combining the above-discusses two tasks yields the third task, in which cross-physics and cross-
modality alignment are realized simultaneously, thanks to our proposed joint alternative training
procedure. We refer to it as cross-modality-and-physics alignment, as shown in Figure 1(c). This
formulation can be further extended to another task, where domain X and Y are two agents with
different morphologies, termed as cross-morphology alignment. For example, domain X can be a
three-leg cheetah and domain Y can be a two-leg cheetah. In this case, the representations of x / y
and a / u are fundamentally different, yet intrinsically they share similarities in locomotion.

7

As the correspondence is established between two domains, it can be applied to different downstream
applications. Suppose that our goal is to transfer a policy trained in domain Y to X . Inference
includes three steps: (i) Given an observation xt in domain X , use observation mapping function G
to translate xt to yt; (ii) Execute the policy in domain Y given yt, and obtain the action output ut;
(iii) Translate the action ut from domain Y back to domain X with the action mapping function P .

B Simulation Experiment Details

We believe that our method can be applied to a lot of environments. However, in this paper we focus
on the representative ones including two tasks based on OpenAI Gym [Brockman et al., 2016], i.e.,
“HalfCheetah”, “FetchReach” and one task based on DeepMind Control [Tassa et al., 2018], i.e.,
“FingerSpin”. To sample the training data, we randomly collect 50k unpaired trajectories in both
domain X and domain Y in most settings. The evaluation dataset size is 10k. Besides evaluating
on the alignment errors, we also benchmark how well the pre-trained RL policies in one domain
can be transferred to another domain. To pre-train the policy, we use DDPG [Lillicrap et al., 2015]
with HER [Andrychowicz et al., 2017] for “FetchReach” and TD3 algorithm [Fujimoto et al., 2018]
for other environments. Note that we do not need to further fine-tune the policy for transferring
to a new domain. We report the task success rate for “FetchReach” and task rewards for the other
environments. All RL policies are trained with 5 different seeds. Here we present more details about
our method implementation and the reference policies.

B.1 Network Architecture

The network architectures for each separate settings are as follows:

Cross-physics. The discriminator D is a five-layer MLP (hidden size: 32, 64, 128, 32) which takes
states as input and predicts whether a state is true or fake. The forward dynamics model F is a
four-layer MLP (hidden size: 64, 128, 32) which takes current state and action as input and predicts
the next state. The observation alignment function G is an identity mapping. The action alignment
functions H and P are MLPs (hidden size: 32, 64, 128, 32) which take current state and action as
input and predicts corresponding action in the other domain.

Cross-modality. The discriminator D and the forward dynamics model F are the same as that in
the “cross-physics” setting. The observation alignment function G is a ResNet-18 and followed by
an MLP head (hidden size: 256, 64, 32) which outputs corresponding state. The action alignment
functions H and P are identity mapping.

Cross-morphology. Newtorks D,F,H and P are the same as that in the “cross-physics” setting.
The observation alignment function G is the same as that in the “cross-modality” setting.

B.2 Training

Given the dataset of unpaired and unaligned samples from two domains, we first train the forward
dynamics model F on domain Y until it converges, we use Adam optimizer [?] with initial learning
rate 0.001 which is decreased by half every three epochs and train the network for 20 epochs. This is
the same for all the settings. Secondly, we train the action alignment functions H,P or observation
alignment function G by optimizing Eq. 5. The pipeline and optimization chain for each separate
settings are as follows:

Cross-physics. We optimize the alignment functions H,P here. We set λ0 = 200, λ1 = 1, and
λ2 = 0 in Eq. 5, where λ2 = 0 means we are not using the observation alignment function G. Note
that although the forward dynamics model F is involved in the back-propagation, we are fixing the
weights of F . We train the models by using the Adam optimizer for 50 epochs with a batch size of
32. The learning rate is set to 0.001 and decreased by 1/3 for every 10 epochs.

Cross-modality. We optimize the observation alignment function G. We set λ0 = 200, λ1 = 0,
and λ2 = 3 in Eq. 5, where λ1 = 0 means we are not using the action alignment function H,P .
Similarly, the forward dyanmics model F is freezed. We train the model with Adam for 50 epochs
with a batch size of 32. The learning rate is set to 0.001 and decreased by 1/3 for every 10 epochs.

Cross-morphology (Joint training). Networks H , P , and G are optimized by Adam optimizer
while the forward dyanmics model F is freezed. We combine the training procedure in cross-physics

8

and cross-modality settings following Algorithm 1. The model is trained for 10 epochs with a batch
size of 32. The training alternates every 5000 steps (e1 and e2). Note each epoch contains more
training steps in joint training. The learning rate is set to 0.0001.

B.3 Reference Policy

We use DDPG [Lillicrap et al., 2015] with HER [Andrychowicz et al., 2017] for “FetchReach” and
TD3 [Fujimoto et al., 2018] for other environments. For DDPG, we train the policy for 50 epochs of
400 episodes in each epoch. The policy exploration epsilon ratio is 0.3 and the reward discount factor
is 0.98. For TD3, we train the policy for 400k time steps. The initial exploration step is 25k. The
reward discount factor is 0.99, the target network update rate is 0.005 and exploration noise standard
deviation level is 0.1. When evaluating the performance of the policies, we calculate 50 episode
rollout rewards across 5 different seeds. We report the rewards with variance in all tables.

C Experiment Setting

C.1 Cross-physics agent setting

The physical parameters in cross-physics settings are shown in Table 4. The “Parameter” column
represents which type of parameter is changed in each task. Recall that we train the RL policy in
domain Y and evaluate in domain X in our evaluation. The numbers in the columns of domain X
and domain Y are the physics values for each domain. The physics parameter in domain Y is defined
by default in the OpenAI Gym MuJoCo simulation environment. The physics parameter in domain
X is selected so that it can cause obvious distortion to the policy trained in domain Y (as shown in
Table ??). Note that we did not perform physics parameter search for improving our method. For the
domain randomization baseline, the parameter value for each episode is uniformly sampled from the
range shown in the last column.

Parameter Envs Domain X Domain Y DR Range

Armature
HalfCheetah 0.3 0.1 [0.2, 0.4]
FingerSpin 2.0 0.0 [1.0, 3.0]
FetchReach 3.0 1.0 [2.0, 4.0]

Torso Mass
Walker 0.4 1.0 [0.0, 0.8]
Hopper 1.2 1.0 [0.8, 1.6]

Table 4: Cross_physics physical hyperparameter settings. The parameters in domain X , domain
Y and parameter range for domain randomization baseline for each task.

C.2 Cross-modality agent setting

In this setting, the resolution of the image observation in domain X is 256×256 and we concatenate
three images (current and previous two frames) as the observation input for G to estimate the state.
By concatenating multiple images instead of one, it allows the representation to capture the velocities
and motion of the agent, which is a common practice for vision-based RL.

C.3 Cross-morphology agent setting

We introduce two tasks for the cross-morphology experiments including the “HalfCheetah” and
“Swimmer” environments. As shown in Figure 2, for “HalfCheetah”, we modify the agent by adding
one more hind leg of the same structure as the original hind leg to obtain a three-leg cheetah. For
“Swimmer”, we add one more limb cloned from the original third limb, leading to a four-limb
swimmer.

C.4 Initialization for Action Alignment Model

In the cross-modality-and-physics alignment, for agents with the same morphology and structure,
we initialize the action translation between two domains by identity mapping, and only train the

9

Two-leg Cheetah Three-leg Cheetah Three-limb Swimmer Four-limb Swimmer

Figure 2: Cross-morphology agent introduction. Left: two-leg Cheetah and its three-leg counter-
part. Right: three-limb swimmer its four-limb counterpart. Please check out our supplementary video
for visualization.

observation alignment model (G) in the beginning. Then we unfreeze the action alignment model (H
and P) and jointly train all models by our alternative training procedure.

For agents of different morphology (e.g., different number of limbs and joints), the dimensions
of action spaces are naturally different. Thus it is impossible to initiate action mapping functions
with identity mapping. Note that we can still use identity mapping for the original joints and limbs
between two domains. For extra joints and limbs, we borrow the mapping function from nearby
joints to initialize the novel joints. For example, in our experiments, we can find correspondence
between the three-leg cheetah and the two-leg cheetah. For the newly-added leg, we use and repeat the
nearby original hind leg actions to initialize its actions. There is no correspondence established from
this initialization, as shown by the experiment results—we provides this initialization baseline for
cross-morphology policy transfer in Table 2. This baseline perform much worse than our approach.

D Implementation details

D.1 Network Architecture

The network architectures for each separate settings are as follows:

Cross-physics. The discriminator D is a five-layer MLP (hidden size: 32, 64, 128, 32) which takes
states as input and predicts whether a state is true or fake. The forward dynamics model F is a
four-layer MLP (hidden size: 64, 128, 32) which takes current state and action as input and predicts
the next state. The observation alignment function G is an identity mapping. The action alignment
functions H and P are MLPs (hidden size: 32, 64, 128, 32) which take current state and action as
input and predicts corresponding action in the other domain.

Cross-modality. The discriminator D and the forward dynamics model F are the same as that in
the “cross-physics” setting. The observation alignment function G is a ResNet-18 and followed by
an MLP head (hidden size: 256, 64, 32) which outputs corresponding state. The action alignment
functions H and P are identity mapping.

Cross-morphology. Newtorks D,F,H and P are the same as that in the “cross-physics” setting.
The observation alignment function G is the same as that in the “cross-modality” setting.

D.2 Training

Given the dataset of unpaired and unaligned samples from two domains, we first train the forward
dynamics model F on domain Y until it converges, we use Adam optimizer [?] with initial learning
rate 0.001 which is decreased by half every three epochs and train the network for 20 epochs. This is
the same for all the settings. Secondly, we train the action alignment functions H,P or observation
alignment function G by optimizing Eq. 5. The pipeline and optimization chain for each separate
settings are as follows:

Cross-physics. We optimize the alignment functions H,P here. We set λ0 = 200, λ1 = 1, and
λ2 = 0 in Eq. 5, where λ2 = 0 means we are not using the observation alignment function G. Note
that although the forward dynamics model F is involved in the back-propagation, we are fixing the
weights of F . We train the models by using the Adam optimizer for 50 epochs with a batch size of
32. The learning rate is set to 0.001 and decreased by 1/3 for every 10 epochs.

10

Cross-modality. We optimize the observation alignment function G. We set λ0 = 200, λ1 = 0,
and λ2 = 3 in Eq. 5, where λ1 = 0 means we are not using the action alignment function H,P .
Similarly, the forward dyanmics model F is freezed. We train the model with Adam for 50 epochs
with a batch size of 32. The learning rate is set to 0.001 and decreased by 1/3 for every 10 epochs.

Cross-morphology (Joint training). Networks H , P , and G are optimized by Adam optimizer
while the forward dyanmics model F is freezed. We combine the training procedure in cross-physics
and cross-modality settings following Algorithm 1. The model is trained for 10 epochs with a batch
size of 32. The training alternates every 5000 steps (e1 and e2). Note each epoch contains more
training steps in joint training. The learning rate is set to 0.0001.

D.3 Reference Policy

We use DDPG [Lillicrap et al., 2015] with HER [Andrychowicz et al., 2017] for “FetchReach” and
TD3 [Fujimoto et al., 2018] for other environments. For DDPG, we train the policy for 50 epochs of
400 episodes in each epoch. The policy exploration epsilon ratio is 0.3 and the reward discount factor
is 0.98. For TD3, we train the policy for 400k time steps. The initial exploration step is 25k. The
reward discount factor is 0.99, the target network update rate is 0.005 and exploration noise standard
deviation level is 0.1. When evaluating the performance of the policies, we calculate 50 episode
rollout rewards across 5 different seeds. We report the rewards with variance in all tables.

E Details of Cycle-GAN Baselines

Here we introduce the details of Cycle-GAN baseline for each different settings.

Cross-physics. In this setting, the Cycle-GAN baseline translates actions between two domains.
The generators and discriminators are MLPs and the cycle loss is the L1 loss. The MLP network
structures follow our approach. The results show that the policy fails to perform across domains and
the mapping is close to random, so we have not included this baseline in the table.

Cross-modality. In this setting, the Cycle-GAN baseline translates between image and its cor-
responding state. The image-to-state generator is the same as G. The state-to-image generator is
composed of MLPs and six upsampling blocks. Each block consists of one transposed convolution
layer, one BatchNorm layer and one ReLU activation layer. The cycle loss is L1 loss. This setting is
also applied to our real robot experiment.

Cross-morphology. The Cycle-GAN model translates states and actions between two domains.
All generators and discriminators are MLPs and the cycle loss is L1 loss.

We visualize in Figure 3 the learned correspondence from the cross-modality alignment on the
HalfCheetah experiment, where observations of images are translated to states. In each plot, x-axis
represents the true-state of the image and the y-axis represents the translation result from the network.
Each point in the plot represents a random sample. We can see that our method is able to translate the
image to the correct states as most of the dots are in the diagonal line (y = x), while Cycle-GAN
yield near random translation similar to the random baseline. The result underlines the significance
of incorporating dynamics into cycle-consistency.

Image-State Cycle-Gan Baseline Random Shuffle Baseline Ours

Figure 3: Correspondence visualization for Cycle-GAN baseline and ours. Cycle-GAN model
performs nearly the same as the random shuffle baseline while our model can correctly find the
correspondence between the image modality and the state modality.

The qualitative visualizations for Cycle-GAN and ours are shown in Figure 4 for the cross-modality
alignment on HalfCheetah. These five sub-figures from left to right in sequence are as follows: (a)
One random image observation sample from the dataset. (b) The rendered image from the state which
is predicted by Cycle-GAN model. (c) The rendered image from the state which is predicted by our
model. (d) The image with a new renderer for our model prediction, giving a different rendering view

11

of the state. (e) The training curve of L1 error for self-supervised state estimation. After training, our
model output is almost the same as the ground-truth while the Cycle-GAN model completely fails.

(a) Random sample (b) Cycle-GAN (c) Ours (d) New render (e) Training curve

Figure 4: Qualitative visualization for Cycle-GAN baseline and ours. The rendered image (c)
from our model prediction looks almost the same like the original input image (a) while Cycle-GAN
baseline (b) fails. The last small figure visualizes the L1 error between the ground-truth state and
our model prediction during the training process and proves the effectiveness of our method in
self-supervised state estimation. More visualizations are presented in the project page link given in
the abstract.

F Real Robot Qualitative Visualizations

The real robot experiment qualitative visualizations are shown in the following figure.

In
pu

t
O

ur
s

C
yc

le
-G

A
N

Figure 5: Visualization of learnt correspondence from RGB images to robot joint states with xArm
robot. We render the predicted states in simulation with green background. While Cycle-GAN
struggles to find the correct correspondence, the results of our method highlights the importance
of dynamics cycle-consistency objective. (Best viewed in Adobe Acrobat to see the gif of the last
column.)

G Discussions

G.1 No compounding error

Compouding error issue is a common problem in robotics. However, our model can alleviate this
error: during inference in X domain, every time step we obtain a new state in X, we will translate it
to Y domain for the RL policy to decide the action. If the agent is off the track, the RL policy will be
able to recover it. The translated state for RL agent is bounded by the discriminator. These alleviate
the compounding error issue.

G.2 Time Contrastive Networks

The Time Contrastive Networks (TCN) proposed by Sermanet et al. [2018] have three limitations
and thus it is not applicable in our setting: (i) It can not estimate the state directly from the image; (ii)
It requires paired data from two domains for learning encoded feature, while our approach is trained
in the unpaired data setting; (iii) Since the data from two domains share the same TC embedding
network, it can not be used to align different modalities.

12

	Related work
	Introduction
	Cycle Dynamics Model
	Simulation Experiments
	Real Robot Experiments
	Optimization and Tasks
	Simulation Experiment Details
	Network Architecture
	Training
	Reference Policy

	Experiment Setting
	Cross-physics agent setting
	Cross-modality agent setting
	Cross-morphology agent setting
	Initialization for Action Alignment Model

	Implementation details
	Network Architecture
	Training
	Reference Policy

	Details of Cycle-GAN Baselines
	Real Robot Qualitative Visualizations
	Discussions
	No compounding error
	Time Contrastive Networks

