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Abstract

Imitation learning has been considered as one of the promising approaches to
enable a robot to acquire competencies. Recently, one-shot imitation learning has
shown encouraging results for executing variations of initial conditions of a given
task without requiring task-specific engineering. However, it remains inefficient for
generalizing in variations of tasks involving different reward or transition functions.
In this work, we aim at improving the generalization ability of demonstration based
learning to unseen tasks that are significantly different from the training tasks. First,
we introduce the use of transformer-based sequence-to-sequence policy networks
trained from limited sets of demonstrations. Then, we propose to meta-train our
model from a set of training demonstrations by leveraging optimization-based
meta-learning. Finally, we evaluate our approach and report encouraging results
using the recently proposed framework Meta-World which is composed of a large
set of robotic manipulation tasks organized in various categories.

1 Introduction

As robotic platforms are becoming affordable, end-user environments like personal houses are
becoming a novel context of deployment for such systems [7]. However, the robotic manipulation
platform has traditionally been deployed in a fully specified environment with predefined and fixed
tasks to accomplish [6]. For this reason, we need to develop control paradigms where non-expert
users will be able to specify new tasks, possibly complex and compositional. Recently, reinforcement
learning has attracted a lot of interest to tackle this problem [8, 5]. Nonetheless, safe and efficient
exploration in a real environment can be difficult [4, 1] and a reward function can be challenging to
set up in a real physical environment. As an alternative, a collection of demonstrations have often
been proposed as a convenient way to define a new task [13, 10].

In this paper, we propose an approach that associates metric-based and optimization-based meta-
learning to perform transfer across robotic manipulation tasks beyond the variation of the same
task using a limited amount of demonstrations. First, we introduce a transformer-based model of
imitation learning. Second, we propose to leverage optimization-based meta-learning to meta-train
our few-shot meta-imitation learning model. This approach allows us to efficiently use a small number
of demonstrations while fine-tuning the model to the target task. Finally, we evaluate our approach to
the recently proposed framework Meta-World [15] that regroups a large set of manipulation tasks
which are organized in several categories. We show significant improvement compared to the one-
shot-imitation framework in various settings. As an example, our approach can acquire 100% success
on 100 occurences of a completely new manipulation tasks with less than 15 demonstrations.

2 Preliminaries

The goal of imitation learning [11] is to train a policy π that can imitate the expert behavior expressed
in the demonstrations. In this context, one-shot imitation learning setting [2, 3] aims at learning
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a meta-policy that can adapt to new, unseen tasks from a limited amount of demonstrations. The
approach has originally been proposed to learn from a single trajectory of the target task. However,
this setting can be extended to few-shot if several demonstrations of the target task are available. Here,
we assume an unknown distribution of tasks p(τ) and a set of meta-training tasks {τi} sampled from
it. Then, for each meta-training task τi, a set of demonstrations Di =

{
di1, d

i
2, ...d

i
N

}
is available.

Each demonstration d is a temporal sequence of { observations ; actions } tuples of successful
behavior for that task dn = [(on1 , a

n
1 ) , · · · , (onT , anT )]. This meta-training demonstration can have

been produced by human or heuristic policies if tasks are simple enough. In a simulated environment,
it is even possible to use reinforcement learning to create a policy from which trajectories can be
sampled. Then, each task can contain different objects and require different skills from the policy. In
the case of robotic manipulation tasks, these tasks can be for example Reaching, Pushing, Sliding,
Grasping, or Placing. Each task will be defined by a unique combination of required skills and the
nature and positions of objects define a task.

Overall, one-shot imitation learning techniques learn a meta-policy πθ, which takes as input both
the current observation ot and a demonstration d corresponding to the task to be performed, and
outputs an action. Conditioning on different demos can lead to different tasks being performed for
the same observation. At training time, the algorithm first sample a task τi, and then sample two
demonstrations dm and dn corresponding to this task. The meta-policy is conditioned on one of these
two demonstrations dn and optimize the following loss on the expert observation-action pairs from
the other demonstration, dm: Lbc(θ, dm, dn) =

∑T
t=1 L(amt , πθ(omt , dn)) where the L is an action

estimation loss function; in this paper we simply use L2 norm for this.

The one-shot imitation learning loss consists in summing across all tasks and all possible correspond-
ing demonstration pairs: Losi(θ, {Di}) =

∑M
i=1

∑
dm,dn∼Di

Lbc(θ, dm, dn), where M is the total
number of training tasks.

3 Transformer-based Meta-Imitation

First, we propose to improve the policy network of [2] by using a transformer-based neural archi-
tecture [14]. This model allows to better capture correspondences between the input demonstration
and the current episode demonstrations using the multi-headed attention layers introduced in the
transformer architecture. To adapt this model to demonstration-based learning, the encoder takes as
input the demonstration of the task to accomplish and the decoder takes as input all the observations
of the current test episode. So, we add a mixture of sinusoïdes with different periods and phases to
each dimension of the input sequences to encoder positioning informations. As in one-shot imitation
model, the next action to perform is the output of the model. Second, we propose to leverage
optimization-based meta-learning [9] to pre-train our policy network. Algorithm 1 describes the
three consecutive steps of our meta-learning and finetuning algorithm. First, our policy is meta-trained
using Reptile over the set of training tasks with an early-stopping over validation tasks. Finally, we
test the model by fine-tuning on the corresponding demonstrations. In this last step, the fine-tuned
policy is evaluated in terms of accumulated reward and success rate by simulated episodes in the
Meta-World environment.

4 Experiments

Evaluation framework: All the evaluations are done in the Meta-World framework [15] which is
composed of 50 manipulation tasks. To sample our demonstrations, we train a neural network policy
for each task using clipped Proximal Policy Optimization [12]. The network used for RL-trained
policy is a stack of fully connected layers as policy with the current state as input and action as output.
Following the results reported in [15], we manage to converge a successful policy for a total of 46
out of 50 tasks with the same hyperparameters. This success signal provided by the framework allows
us to evaluate our meta-train policies. We gather 5K demonstrations per task for meta-training by
sampling the PPO-trained policies. Then, The user tasks are defined using demonstrations as we do
not assume having access to a reward signal or having the possibility to explore the environment
at test-time. Using the shape of the task reward function, we group each task of Meta-World in 3
categories which are (1) Push (2) Reach and (3) Pick-Place as defined in [15].

2



Algorithm 1 Meta-Learning and Testing algorithm with Reptile
Input Set of demonstrations DTr , DTe , DTs of train, validation and test tasks Tr
Input Meta learning rate β

1: Initialize policy πθ
2: while not Earlystop do . Meta-Train
3: for all task τ in Tr do
4: Sample batchs of pairs of demonstrations {dτi , dτj } from DTr (τ)
5: Compute Wi = Adam(Lbc(τ, πθ))
6: Update policy: θ ← θ + β(Wi − θ)
7: end for

8: ValLoss = 0
9: for all task τ in Te do . Validation

10: Sample all pairs of demonstrations {dτi , dτj } from DTe(τ)
11: Compute θ′ = Adam(Lbc(τ, πθ))
12: V alLoss+ = Lbc(τ, πθ′)
13: end for
14: Earlystop(ValLoss)
15: end while

16: for all task τ in Ts do . Test
17: Sample all pairs of demonstrations {dτi , dτj } from DTs(τ)
18: Compute θ′′ = Adam(Lbc(τ, πθ))
19: Execute πθ′′ on simulator for N episodes
20: Mesure reward, success rate
21: end for

Architecture: we compare the performance of our Transformer architecture to the state-of-the-art
recurrent architecture. Both models are meta-train using Reptile and individually fine-tuned on each
test task. We note a dramatic improvement for transfer across tasks, the results are summarized
in Figure 1. We believe this result is particularly valuable as Pick-Place tasks are known to be
challenging and usually require a large number of trials in a reinforcement learning setting as reported
in [15]. In the case of transfer within the same task category, the comparable performances confirm
the successful results reported in [2]. Nonetheless, in this setting, our Transformer-based policy
seems to better handle the case with the lowest amount of demonstrations. For transfer across task
categories, our model shows clear superiority which can be explained at least in two ways.

Meta-learning and Finetuning: We compare all considered pre-training approaches and we focus
on the proposed Transformer-based policy. Results are depicted in Figure 2. As a first baseline, we
consider the case where no pre-training strategy is applied. We use Xavier uniform initialization
then directly optimize the policy on the demonstration of the test tasks. Otherwise, we pre-train a
policy with Reptile or with Multi-Task which is mixing all tasks in the batch gradient. The fact that
random initialization is inferior assesses the complexity of the considered tasks and confirms that the
meta-training approaches do capture regularities of the consider environment across tasks. In transfer
within the same task category, Reptile seems to provide better results as the number of demonstration
decreases as for transfer across different task categories. Finally, we evaluate the performance of the
Multi-task approach without performing finetuning. This training approach is the closest to the one
proposed in the one-shot imitation method. The model does capture regularities that allow it to have
a success rate in transfers within task categories.
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Figure 1: Comparison of policy architectures by success rate, (Top-line) Transfer within Push tasks; (Middle-line)
Transfer from Push tasks to Pick-Place tasks; (Bottom-line) Transfer from Reach tasks to Pick-Place tasks. Error
bars represent the standard deviation on 100 episodes with 4 seeds.
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Figure 2: Comparison of initialization and finetuning approaches, (Top-line) Transfer within Push tasks; (Middle-
line) Transfer from Push tasks to Pick-Place tasks; (Bottom-line) Transfer from Reach tasks to Pick-Place tasks.
Error bars represent the standard deviation on 100 episodes with 4 seeds.

5 Conclusion

In this work, we propose a method to combine metric-based and optimization-based meta-learning
for behavior cloning in robotic manipulations. We have introduce transformer-based architecture for
meta-imitation learning and shown encouraging results. We demonstrated the effectiveness of this
approach on the Meta-World environment in a large variety of tasks and show clear improvements to
the original one-shot imitation learning method. Regarding further works, extending our approach to
visual demonstrations is interesting for enhancing the genericity of our model. Another direction is to
explore the interplay between reward-defined and demonstration-defined tasks.
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