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Abstract

Robotic planning in realistic environments requires searching in large planning
spaces. A powerful concept for guiding the search is affordance, which models
what actions can be successful in a given situation. However, the classical notion
of affordance is unsuitable for planning because it only informs the robot about
the immediate outcome of actions instead of what actions are best for achieving a
long-term goal. In this paper, we introduce a new affordance representation and
a learning-to-plan framework that enable the robot to reason about the long-term
effects of actions through modeling what actions are possible in the future. We
show that our method, Deep Affordance Foresight, can effectively learn multi-step
tool-use tasks and quickly adapt to a new longer horizon task. More materials and
appendix available at https://sites.google.com/stanford.edu/daf

1 Introduction

Planning for multi-step tasks in real-world domains (e.g., making coffee in a messy kitchen) is a
long-standing open problem in robotics. A key challenge is that the tasks require searching for
solutions in high-dimensional planning spaces over extended time horizons. An approach to the
challenge is to reduce the search problem into a skill planning problem: finding a sequence of motor
skills applied to objects that will bring the environment to the desired state [1–6]. However, this
reduction leads to a combinatorial space of possible skill parameters and object states, which can
still be prohibitively expensive to plan with. On the other hand, only a small subset of skills can be
carried out successfully at a given state in a typical manipulation domain. Thus to be effective, it is
crucial for a planner to focus only on skills that are executable in a given environment state.

The ability to reason about what actions are possible in a given situation is commonly studied through
affordances. Classically, an affordance is the potential for actions that an object “affords” to an
agent [7]. For example, a mug is “graspable” and a door is “openable”. These affordances can be
refined to consider the exact parameterization of the action that may lead to success. For example,
prior works in robotics have used affordance to represent possible grasping poses based on images of
objects [8–11]. However, we argue that this classical notion of affordance is myopic and unsuitable
for skill planning. This is because an affordance only implies the potential of carrying out an action,
ignoring the action’s effect on the subsequent plan towards a long-term goal. Consider the scene in
Fig. 1: a myopic “graspable” affordance of the tool only implies that an agent can grasp and hold the
tool, but different tasks may require different grasping poses. For example, using the tool to hook the
red cube requires a different pose than for pushing the blue cube out of the tube.

In this work, we propose to use a learned environment dynamics model to extend the concept of
affordances to represent the future actions that would become feasible if a certain action is executed
at the current state, thereby informing the agent the best actions to take to achieve a long-term goal.
For example, given a task goal of grasping the red cube, we aim to model whether a grasping pose
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Figure 1: We evaluate our method in a tool-use domain (left). The two tasks shown on the right
require the robot to use the tool differently depending on the task goal (red vs. blue on target). A
virtual wall prevents the gripper from directly grasping the red cube.

would enable the robot to use the tool to hook the cube. This would subsequently depend on whether
an enabled hook action would make a grasp(red-cube) action feasible.

To develop the method, we adopt a relaxed notion of affordances. Classically, an afforded action
is both feasible (e.g., robot kinematics allows reaching the target grasping pose) and can achieve
a desired effect (e.g., the tool being grasped stably). As discussed above, different task goals may
require different action effects (e.g., different in-hand poses). Instead, we relax the definition of
affordance to only model the feasibility of an action, and represent the effect of an action as the
expected affordances at future states. In other words, we wish to model (1) what actions are feasible
at a given state and (2) what actions would become feasible if an action is executed. This recursive
structure allows composing chains of affordances to reason about long-horizon plans.

Concretely, we introduce Deep Affordance Foresight (DAF), a learning-to-plan method that incre-
mentally builds environment models around the affordances of parameterized motor skills [12], and
learns to plan for multi-step tasks through trial-and-error. DAF learns a latent dynamics model to
predict future latent states conditioned on sampled skill plans and an affordance prediction model
to evaluate skill affordances both at the current and future latent states. DAF can use both models
together to select multi-step plans that are most likely to achieve a task goal. Moreover, DAF can
be trained end-to-end from pixel observations, allowing DAF to model complex dynamics such as
pouring liquid, for which manually defining an affordance is hard.

We present evaluation results on the Tool-Use domain as shown in Fig. 1, where a free gripper robot
must use the hook-like tool to fetch the red and blue cubes and put them on the green target, evaluating
the capabilities of our robot to differentiate between the same affordance (graspable) based on future
task needs. In Appendix, we present result on Kitchen domain. It requires the robot to plan through
complex dynamics such as pouring liquid to complete multi-stage tasks of serving tea or coffee,
highlighting the ability of DAF of combining and reusing learned affordances for other tasks.

2 Method

This section describes the affordance-based planning problem and introduces the learning-to-plan
method Deep Affordance Foresight. We include detailed discussions on related methods in Appendix.

Problem setup. We consider partially observable domains with observation space O, state space S,
parameterized skills Π (described later), and transition dynamics T : S ×Π→ Dist(S). We assume
a finite set of goals G. Each g ∈ G is a binary condition function g : S → {0, 1} indicating if a state
is in a goal state set Sg . The objective is to reach the goal by the end of an episode.

Following prior work [13], we define a parameterized skill [12] by a policy π(s, θ) modulated by a
set of parameters θ ∈ RD. For example, a grasping skill (π) can be parameterized by 3D grasping
positions (θ), and the policy can execute a planned grasping motion. An important feature of motion
planning-based skills that we leverage in this work is that we can check if a skill is feasible to execute
before executing it. The feasibility can be determined through robot kinematic constraints or if a
skill motion plan would result in unintended collision between the robot and the environment. For
example, in the setup shown in Fig.1, grasping the red cube directly is infeasible due to the kinematic
constraint defined by the virtual wall, and grasping the blue cube would collide the gripper with the
pipe, which is also infeasible. Skill feasibility checkers are commonly used to prune skill samples in
solving a larger task-and-motion-planning (TAMP) problem [1–6]. TAMP methods typically require
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knowledge of ground truth states and an environment dynamics model. Instead, we leverage skill
feasibilities to develop a method that can learn to plan in an environment with unknown dynamics.

2.1 Planning with Affordances

Here we formally define our affordance representation and introduce a planning problem setup.

Definition 1 (Affordance A): Given a skill (π, θ), we define an affordance as Aπ,θ = {s ∈
S|(π, θ) is feasible at s}. We use Aπ,θ(s) = 1[(s, π, θ) ∈ Aπ,θ] to denote if state s affords (π, θ).

To formalize a planning problem using A, we first show how to compute the probability of plan
completion from some initial state distribution. A length-N plan p belongs to the set PN =
{(πi, θi)}Ni=1|(πi, θi) ∈ Π, N ∈ Z+}. A particular plan p ∈ PN is then a sequence of parametrized
skills {(π1, θ1), . . . , (πN , θN )}. Without loss of generality, we assume fixed plan length and omit
the subscript N . Given a plan p, we denote the induced state distribution at each step i as Zi(·; p).
Given an initial state distribution Z0(·; p), Zi>0(·; p) can be expressed recursively as:

Zi(s
′; p) ∝

∑
s∈S
T (s′|s, πi, θi)Zi−1(s; p)Aπi,θi(s) (1)

where (πi, θi) is the skill at step i of plan p. We can compute the probability of completing the plan p
(being able to execute each skill in the plan) starting from Z0 as:

Cplan(p = {(π1, θ1), . . . , (πN , θN )}) =
∑
s∈S

ZN−1(s; p)AπN ,θN (s) (2)

Next we show how to construct plans towards a goal g ∈ G. The key idea is to reinterpret g using
affordance. Recall that g is a binary function on whether a state belongs to its goal state set Sg. We
say that a plan p = {(πi, θi)}Ni=1 is directed towards goal g if the last skill in the plan can be executed
in a goal state, i.e., AN ⊆ Sg .

Definition 2 (Goal-directed plans Pg): Given a goal g ∈ G and its goal state set Sg, we define the
goal-directed plans of g as Pg ⊆ P such that ∀{(πi, θi)}Ni=1 ∈ Pg,AπN ,θN ⊆ Sg .

Finally, the problem of searching for a best skill plan towards goal g ∈ G is:

arg maxp∈Pg
Cplan(p) (3)

While it is possible to find exact optimal solutions by computing Eq. (3) from state space S and
transition function T , we aim at realistic domains in which we have access to neither. In the following,
we present a method that learns to plan in an unknown environment by modeling affordances.

2.2 Deep Affordance Foresight (DAF)

We base our learning-to-plan method on a model-based reinforcement learning (MBRL) formulation.
To behave in an environment with unknown dynamics, an MBRL agent needs to learn both a dynamics
model and a cost function to predict plan-induced future states and evaluate plan costs. Our method
can be viewed as building a partial model [14] of the environment based on affordances. Prior
works on building partial models have shown remarkable results on learning dynamics [15–18]. For
example, PlaNet [18] combines the dynamics and cost modeling by predicting multi-step future
rewards through a learned dynamics model. However, these works rely on modeling task-specific
quantities such as rewards. In contrast, our affordance modeling is task-agnostic: a grasping skill is
afforded regardless of the final task goal. This allows our method to share learned affordance models
among plans with different goals, which can improve sample efficiency and task performance.

Concretely, we jointly train a latent dynamics model and an affordance prediction model to predict
skill affordances at future states. We use model-predictive control (MPC) to plan in the learned
latent space and evaluate the proposed plans by computing plan completion probabilities (Eq.3) from
predicted affordances. Our method iteratively collects data from environment using planning and
trains the two models on the gathered data. Below we provide details of the components.

Latent dynamics model. We consider experience sequences {(ot, πt, θt, at)}Tt=1, environment
observation ot, a skill (πi, θi) that the robot attempted to execute at time t, and the resulting binary
affordance value at. Following PlaNet [18], we project observation ot to a latent encoding zt
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DAF (no RNN)DAF GC-PlaNet plan skeleton

tool-use (blue cube)tool-use (red cube) tool-use + stack Figure 2: Results on the jointly
learning the two tool-use tasks
shown in Fig. 1 and a combined tool-
use + stack task, where the robot
has to use the tool to get both cubes
and stack them on the green tar-
get. We compare our method (DAF)
and a goal-conditional variant of
PlaNet [18] (GC-PlaNet).

using an observation encoder zt = fenc(ot). The encoder can be a multi-layer perception for low-
dimensional observations and deep CNN for image observations. We make a simplified assumption
that the latent dynamics is deterministic [19] and construct a deterministic transition model ẑt+1 =
ftrans(zt, πt, θt). We also explore a recurrent transition model ht+1 = ftrans(ht, zt, πt, θt) with
decoder ẑt+1 = fdec(ht+1) that shows better empirical performance on long-horizon tasks.

Learning dynamics by predicting affordances. Given latent experiences {(zt, πt, θt, at)}Tt=1, we
train a binary classifier ât = fA(zt, πt, θt) to predict whether a latent state zt affords the skill (πt, θt).
We train the affordance model jointly with the latent dynamics model. The simplest way is to learn
from one-step transitions: predicting ât and ât+1 from (zt, πt, θt) and (ftrans(zt, πt, θt), πt+1, θt+1),
respectively. However, as shown in [17, 18], the latent dynamics model learned from one-step transi-
tions is often not accurate enough for long-horizon planning. Hence we adopt the overshooting [17]
technique and optimize ftrans and fA over multi-step affordance predictions.

Planning with MPC We use a standard model-predictive control (MPC) strategy to plan with
the learned latent dynamics and affordance models. Given a goal g, the MPC planner optimizes
argminπ,θ C({(zi, πi, θi)}Hi=1), with plan cost function C, goal-directed plans (π1:H , θ1:H) ∈ Pg,
and the induced latent sequences z1:H over a planning horizon H . We use the negative of the plan
completion probability defined in Eq. 3 as the plan cost. Because we assume deterministic transition,
we can conveniently compute the cost as C({(zi, πi, θi)}Hi=1) = −

∏H
i=1 fA(zi, πi, θi).

3 Experiments

We use the Tool-Use environment (Fig. 1) to analyze the key traits of our method, and present
additional results on task knowledge transfer and image-input evaluation in Appendix.

Task setup We evaluate on two sets of tasks. The first is tool-use with two task goals: use the tool to
fetch and place either the blue or the red cube on the green target. A virtual wall prevents the gripper
from directly grasping the red cube - the robot must use the tool to pull it across the wall. The blue
cube is in a pipe - the robot needs to use the tool to push it out of the pipe first. The two task goals
are sampled randomly each episode. tool-use + stack is a longer task of stacking the two cubes on
top of the target, which requires the robot to use the tool differently to fetch both cubes.

Architectures and baselines To isolate the effects of our method and design choices, we focus on
object pose input space in this domain. We evaluate our method with recurrent dynamics (DAF) and
MLP-based dynamics (DAF (no RNN)). We compare with a goal-conditional variant of PlaNet [18]
(GC-PlaNet) by conditioning the learned reward model on a task ID. To facilitate fair comparisons,
we remove the auxiliary observation model and the stochastic component in the recurrent dynamics of
PlaNet, and match all other architecture choices to DAF. We also include a hard-coded baseline (plan
skeleton) that executes ground truth plan skeletons (discrete skills) with random skill parameters.

Results Left two plots in Fig. 2 show the results of jointly learning the two tool-use tasks. We see
that DAF converges to high success rate within 1000 episodes for both tasks. GC-PlaNet performs
competitively on the red-cube task but peaks at 0.4 success rate for the blue cube task, which requires
more careful grasping pose choice for poking the blue cube out of the pipe. The rightmost plot in
Fig. 2 shows the results on a longer task that requires the robot to fetch the two cubes and stack them
on the green target. On the left figure, we observe that DAF reaches peak performance of 0.7 success
rate at episode 1500, whereas GC-PlaNet converges at 0.1 success rate. Notably, DAF without RNN
dynamics falls flat on this task, echoing the findings in [17, 18] that recurrent dynamics is crucial for
modeling long tasks.
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1 Additional Related Work

1.1 Affordance

Affordances have a rich history in fields such as robotics, psychology, computer vision, and reinforce-
ment learning (RL). In robotics, many have used affordance as a representation prior, e.g., predicting
grasping poses [1–4], traversable regions [5], and exploration [6]. As discussed in the introduction,
such a notion of affordance cannot be easily adapted for planning due to its myopic nature.

Other works have explored learning affordance with respect to a task goal. For example, task-aware
grasping [7–10] predicts grasping poses in anticipation of a task goal (e.g., tool-use [8]). However,
each learned affordance representation is tied to a specific task goal (e.g., a specific way of using the
tool). In contrast, our affordance representation can be flexibly composed to reason about diverse
long-horizon plans with different task goals.

Theoretical works in RL have formalized affordance for sequential decision making [11–14]. Closest
to us is Khetarpal et al. [14] that introduces the notion of “intent”. Intent specifies the desired future
state distribution of an afforded action. By modeling the satisfiability of intents, they build partial
models of environments that allow efficient planning. A key limitation of this work is that the intents
are complex functions that are hand-defined, e.g., a “Move Left” intent checks the agent’s x-position
change in a grid world. Such detailed conditions are tedious and difficult to specify robotics domains.
For example, in our Tool-Use domain, one would need to define different intents for grasping the tools
at different locations. This also requires specifying the precise relative poses between the gripper and
the object. In contrast, our affordance represents action feasibilities, which can be checked via robot
kinematics or a crude collision detector and shared across all tasks in the same domain.

1.2 Task and Motion Planning

Our definition of affordance is closely related to “preconditions” or “preimages” in Task and Motion
Planning (TAMP) [15–20]. Most TAMP methods require fully-specified planning space and dynamics
models. Recent works proposed to build dynamics models by characterizing the preconditions and
effects of skills [21–24]. For example, Kaelbling et al. [21] proposes to learn the preimage of a skill
given desired effects through trial-and-error. However, they still require predefined planning spaces
such as object poses. Our method plans in a learned latent space with image input. This enables our
method to model complex dynamics such as pouring liquid, for which manually designing a planning
space would be challenging.

Our planning formulation is heavily inspired by works from Konidaris and colleagues [25–28],
which aim to build compact symbolic environment models by capturing skill pre-condition and
effect distributions through interaction. The resulting symbolic models are provably both necessary
and sufficient to verify whether a skill plan is sufficing [27], meaning that the plan is executable
(analogous to plan completion probability defined in the main text and leads to a goal (analogous to
our goal-directed plans). However, these symbolic representations, once built, are confined to a fixed
domain. A recent work [29] attends to this limitation by building symbols on an agent-egocentric
space that facilitates cross-domain generalization. Our work offers a different perspective and propose
a latent planning formulation that exploits the generalization ability of deep neural networks. Our
idea of composing affordance for planning is also related to option chaining [30, 31], although we do
not explicitly construct skill trees.

Our method is related to works that learn to predict TAMP plan feasibilities from observations [32–
34]. For example, Deep Visual Reasoning [34] learns to generate feasible plan skeletons for Logical
Geometric Programming (LGP) solvers. A drawback of these approaches is that they rely on
TAMP/LGP planners that can already solve the task to generate planning supervisions for training. In
contrast, our method learns through trial-and-error.

1.3 Learning to Plan

Our method is related to learning dynamics models for model-based RL [35–38]. Most recent
works have focused on building complete environment models directly from the raw observation
space. However, learning to make accurate predictions with high-dimensional observations is still
challenging [35, 37, 39], especially for visually complex long-horizon tasks. Instead, our method
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Figure 1: Visualizing the plan score predictions over the course of learning the two tool-use tasks.
Each column shows the prediction made by models trained with N number of actively collected
episodes. Each pixel of the heat map shows the predicted score of a plan that starts with the grasp
skill parameterized by the corresponding x, y location.

builds a partial model [40] of the environment on skill affordances, which are low-dimensional and
amenable to long-horizon planning.

Prior works on planning with partial models focuse on predicting either reward or quantities that are
tied to a task [38, 41–43]. For example, PlaNet [38] learns to predict future rewards and observations
through a latent dynamics model. It is difficult for these methods to share reward models among
different tasks and transfer to new tasks. In contrast, our composable affordances are defined
independent of a final task goal. This enables our learned affordance and dynamics models to be
shared and reused among different tasks to improve data efficiency and task performance.

2 Additional Details and Results on Tool-Use

Parameterized skills The agent is provided with four parameterized motor skills: grasp, place,
hook, and poke. grasp executes top-down grasps parameterized by 3D grasping locations relative
to the target object. place sets a grasped object onto a surface parameterized by the relative 2D
location between the object and the surface. Both hook and poke moves the object-in-hand along a
trajectory with parameterized start and end positions. The motion trajectories are generated using
RRT-based [44] motion planners. We use additional “no-op” skills to specify goals. no-op skills
are skills that have affordance sets but do not incur changes to the environment if executed. Each
goal (red-on-target, blue-on-target, stack-red-blue-on-target) is associated with a no-op goal skill for
which the affordance set is equal to the goal state set. In other words, the goal skills are only afforded
at their corresponding goal states.

Skill feasibilities Skill feasibilities are determined by pre-defined workspace constraints (e.g., the
gripper cannot go beyond the virtual wall) and PyBullet’s built-in collision detector for checking if a
motion plan would cause unintended collisions between the robot and the environment. For example,
we consider a grasping skill that would result in the gripper colliding with the table as infeasible.
Conversely, grasping skills that do not touch any object at all are considered to be feasible. In the real
world, collision detection can be implemented through a depth-based octomap [45].

Architectures and baselines To isolate the effects of our method and design choices, we focus on
object pose input space in this domain. We evaluate our method with recurrent dynamics (DAF) and
MLP-based dynamics (DAF (no RNN)). All other components, fenc, fA, and ftrans, are MLPs. We
compare with a goal-conditional variant of PlaNet [38] (GC-PlaNet) by conditioning the learned
reward model on a task ID. To facilitate fair comparisons, we remove the auxiliary observation
model and the stochastic component in the recurrent dynamics of PlaNet, and match all other
architecture choices to DAF. These components are orthogonal to the comparison and adding them
to our framework will be explored in future work. We also include a hard-coded baseline (plan
skeleton) that executes ground truth plan skeletons (discrete skills) with random skill parameters
in open-loop to highlight that the tasks we consider require intelligent skill parameter selection in
conjunction with the correct skill sequence to solve consistently.
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Figure 2: Setup (left) and results on key stages of the Kitchen task domain, which features challenging
dynamics such as liquid-like objects (load coffee machine). We compare our method DAF and
GC-PlaNet on learning to achieve the two final goals, get coffee and get tea, with raw image input.

Analyzing learned affordances To get a better idea of how the affordance representations learned
by DAF develop over the training process, we visualize the plan scores computed from the learned
affordance values. Specifically, we visualize plan scores at the beginning of both tool-use tasks, since
both task goals require the robot to grasp the tool. As shown in Fig. 1, each pixel in the overlaid
heatmap (red-high, blue-low) indicates the normalized score of a plan that starts with a grasp skill
parameterized by the corresponding x, y location with a constant z-height. Each column shows the
visualization produced by models trained with certain number of actively collected episodes.

We see that DAF is able to rapidly learn meaningful affordance representations with respect to
each task goal with as little as 400 actively collected episodes. In contrast, GC-PlaNet’s plan score
prediction remains noisy even at 1000 episodes. One may also notice that DAF continues to shrink
its “good grasp” predictions at episodes 1000. This is because while the plan scores are only used to
decide the next skill to execute, they are computed from the future skills affordances over the rest
of a plan. As the training progresses, the agent starts to reach later stages of the task and get better
estimates of the skill affordances later in the plan, which will in turn influence the plan scores even at
the beginning of an episode. This behavior highlights the key difference between our future-aware
affordance representation and traditional affordances that only model myopic effects of actions.

2.1 Results on Kitchen Domain

Compared to TAMP-like methods that require a hand-defined planning space (e.g. object poses), our
method can learn end-to-end with raw image inputs. This allows our method to learn to plan through
complex non-rigid dynamics such as pouring liquid. To test this capability, we task the robot to serve
tea and coffee in the Kitchen domain as shown on the left side of Fig.2 with only visual inputs.

Setup The domain has two tasks of varying difficulties: in the simpler get tea task, the robot needs
to open the drawer, fetch the mug, use the platform to reorient the grasp and set the mug at the correct
location beneath the tea dispenser tap to get tea. In a more challenging get coffee task, the robot
needs to fetch the mug from the drawer, use the mug to get the coffee beans from the dispenser, then
pour the coffee beans into the coffee machine, and finally set the mug beneath the coffee machine
dispenser to get coffee. The two goals are sampled randomly each episode. We use small spherical
beads to approximate liquid dynamics.

The robot is equipped with the following parameterized skills: grasp is parameterized with gripper-
object distance and two discrete grasping orientations: side and top; place with the relative location
between the object to be place and a surface object; pour is parameterized by the relative position
between the object-in-hand and the target container and a pouring angle; open is parameterized by a
grasp location and a distance to pull along a given direction. We use no-op to skills to represent the
goals.

The environment observations are RGB images rendered at 128× 128 resolution from the perspective
shown in Fig. 2. Accordingly, we change fenc to a ResNet architecture [46] followed by a a
Spatial-Softmax layer [47] and an MLP. The remaining components are the same as in Tool-Use.

Results As shown in Fig. 2, DAF is able to jointly learn both tasks, get tea and get coffee, with high
success rate from only raw image inputs. Moreover, we observe that both DAF and GC-PlaNet can
solve the simpler get tea tasks, with DAF having significantly lower performance variance. For the
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Algorithm 1 PLANWITHAFFORDANCE

Hyperparameters: Planning horizon H , Number of skill samples N
Inputs:
z = fenc(o) . observation encoder
ẑt+1 = ftrans(zt, πt, θt) . latent transition model
ât = fA(zt, πt, θt) . affordance model
πt ∼ fπ(zt) . skill skeleton proposal model
o . current environment observation
θ ∼ param(π) . random skill parameter sampler
Pg . set of goal-directed plans for goal g
Start
plans← [] . sampled plans
affs← [] . step-wise affordances
z1 ← fenc(o) . encode observation to latent
z1:N1 ← repeat(z1, N) . repeat latent N times
for i← [1, ...,H] do

π1:N
i ∼ fπ(z1:Ni ) . Take skill skeleton samples
θ1:Ni ∼ param(π1:N

i ) . Take random parameter samples for each skill
a1:Ni = fA(zi, π

1:N
i , θ1:Ni ) . Compute affordance values

plans← plans ∪ (π1:N
i , θ1:Ni )

affs← affs ∪ a1:Ni
z1:Ni+1 ← ftrans(z

1:N
i , π1:N

i , θ1:Ni ) . Forward latent states
end for
for k ← [1, ..., N ] do

(π1:H , θ1:H)← plans[k] . k-th plan in plans
a1:H ← affs[k] . k-th plan-wise affordances in affs

ck ←

{
−
∏H
t=1 at if (π1:H , θ1:H) ∈ Pg

∞ otherwise
. goal-directed plan cost (Eq.3)

end for
k ← argmink={1...N}(ck) . get the lowest-cost plan index
π∗, θ∗ ← plans[k][0] . first skill of the chosen plan

return π∗, θ∗

more challenging get coffee task, DAF learns to fill the mug with coffee beans within 500 episodes and
learns to get coffee from the coffee machine at 0.6 success rate in 1500 episodes, whereas GC-PlaNet
plateaus at <0.2 success rate.

DAF GC-PlaNet

DAF-transfer GC-PlaNet-transfer

Figure 3: Results on transfer
learning

We in addition highlight that the task-agnostic affordance representa-
tion allows DAF to share the learned affordance and latent dynamics
models across tasks. To verify this claim, we compare learning the
standalone get coffee task a) from scratch and b) finetuning from mod-
els pretrained on the get tea task. DAF should be able to transfer
the affordances for opening the drawer and fetching the mug from
the short get tea task to the longer get coffee task. To remove con-
flating factors such as image encoders, we evaluate the models on a
hand-defined feature space of object poses and the number of {coffee,
coffee bean, tea} beads contained in each object. As Fig. 3 shows,
DAF pretrained with the get tea task is able to learn the get coffee task
with only 300 actively collected episodes. In contrast, the pretrained
GC-PlaNet shows no significant improvement compared to learning
from scratch.

4



References
[1] J. Mahler, J. Liang, S. Niyaz, M. Laskey, R. Doan, X. Liu, J. A. Ojea, and K. Goldberg, “Dex-net 2.0:

Deep learning to plan robust grasps with synthetic point clouds and analytic grasp metrics,” arXiv preprint
arXiv:1703.09312, 2017.

[2] K. Bousmalis, A. Irpan, P. Wohlhart, Y. Bai, M. Kelcey, M. Kalakrishnan, L. Downs, J. Ibarz, P. Pastor,
K. Konolige, et al., “Using simulation and domain adaptation to improve efficiency of deep robotic
grasping,” in 2018 IEEE international conference on robotics and automation (ICRA), pp. 4243–4250,
IEEE, 2018.

[3] R. Detry, D. Kraft, O. Kroemer, L. Bodenhagen, J. Peters, N. Krüger, and J. Piater, “Learning grasp
affordance densities,” Paladyn, Journal of Behavioral Robotics, vol. 2, no. 1, pp. 1–17, 2011.

[4] P. Mandikal and K. Grauman, “Dexterous robotic grasping with object-centric visual affordances,” arXiv
preprint arXiv:2009.01439, 2020.

[5] E. Ugur, M. R. Dogar, M. Cakmak, and E. Sahin, “The learning and use of traversability affordance using
range images on a mobile robot,” in Proceedings 2007 IEEE International Conference on Robotics and
Automation, pp. 1721–1726, IEEE, 2007.

[6] T. Nagarajan and K. Grauman, “Learning affordance landscapes forinteraction exploration in 3d environ-
ments,” arXiv preprint arXiv:2008.09241, 2020.

[7] H. Dang and P. K. Allen, “Semantic grasping: Planning robotic grasps functionally suitable for an
object manipulation task,” in 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems,
pp. 1311–1317, IEEE, 2012.

[8] K. Fang, Y. Zhu, A. Garg, A. Kurenkov, V. Mehta, L. Fei-Fei, and S. Savarese, “Learning task-oriented
grasping for tool manipulation from simulated self-supervision,” The International Journal of Robotics
Research, vol. 39, no. 2-3, pp. 202–216, 2020.

[9] D. Song, K. Huebner, V. Kyrki, and D. Kragic, “Learning task constraints for robot grasping using graphical
models,” in 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1579–1585,
IEEE, 2010.

[10] A. Zeng, S. Song, S. Welker, J. Lee, A. Rodriguez, and T. Funkhouser, “Learning synergies between
pushing and grasping with self-supervised deep reinforcement learning,” in 2018 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pp. 4238–4245, IEEE, 2018.

[11] D. Abel, G. Barth-Maron, J. MacGlashan, and S. Tellex, “Toward affordance-aware planning,” in First
Workshop on Affordances: Affordances in Vision for Cognitive Robotics, 2014.

[12] D. Abel, D. E. Hershkowitz, G. Barth-Maron, S. Brawner, K. O’Farrell, J. MacGlashan, and S. Tellex, “Goal-
based action priors,” in Twenty-Fifth International Conference on Automated Planning and Scheduling,
2015.

[13] F. Cruz, S. Magg, C. Weber, and S. Wermter, “Training agents with interactive reinforcement learning
and contextual affordances,” IEEE Transactions on Cognitive and Developmental Systems, vol. 8, no. 4,
pp. 271–284, 2016.

[14] K. Khetarpal, Z. Ahmed, G. Comanici, D. Abel, and D. Precup, “What can i do here? a theory of
affordances in reinforcement learning,” 2020.

[15] L. P. Kaelbling and T. Lozano-Pérez, “Hierarchical task and motion planning in the now,” in ICRA, 2011.

[16] L. P. Kaelbling and T. Lozano-Pérez, “Integrated task and motion planning in belief space,” The Interna-
tional Journal of Robotics Research, vol. 32, no. 9-10, pp. 1194–1227, 2013.

[17] C. R. Garrett, T. Lozano-Pérez, and L. P. Kaelbling, “Pddlstream: Integrating symbolic planners and
blackbox samplers via optimistic adaptive planning,” in Proceedings of the International Conference on
Automated Planning and Scheduling, vol. 30, pp. 440–448, 2020.

[18] M. Toussaint, “Logic-geometric programming: An optimization-based approach to combined task and
motion planning,”

[19] M. A. Toussaint, K. R. Allen, K. A. Smith, and J. B. Tenenbaum, “Differentiable physics and stable modes
for tool-use and manipulation planning,” 2018.

5



[20] C. R. Garrett, R. Chitnis, R. Holladay, B. Kim, T. Silver, L. P. Kaelbling, and T. Lozano-Pérez, “Integrated
task and motion planning,” arXiv preprint arXiv:2010.01083, 2020.

[21] L. P. Kaelbling and T. Lozano-Pérez, “Learning composable models of parameterized skills,” in 2017 IEEE
International Conference on Robotics and Automation (ICRA), pp. 886–893, IEEE, 2017.

[22] Z. Wang, C. R. Garrett, L. P. Kaelbling, and T. Lozano-Pérez, “Active model learning and diverse action
sampling for task and motion planning,” in 2018 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pp. 4107–4114, IEEE, 2018.

[23] H. M. Pasula, L. S. Zettlemoyer, and L. P. Kaelbling, “Learning symbolic models of stochastic domains,”
Journal of Artificial Intelligence Research, vol. 29, pp. 309–352, 2007.

[24] V. Xia, Z. Wang, and L. P. Kaelbling, “Learning sparse relational transition models,” International
Conference on Learning Representations, 2018.

[25] G. D. Konidaris, L. P. Kaelbling, and T. Lozano-Perez, “Constructing symbolic representations for high-
level planning,” 2014.

[26] G. Konidaris, L. P. Kaelbling, and T. Lozano-Perez, “Symbol acquisition for probabilistic high-level
planning,” AAAI Press/International Joint Conferences on Artificial Intelligence, 2015.

[27] G. Konidaris, L. P. Kaelbling, and T. Lozano-Perez, “From skills to symbols: Learning symbolic represen-
tations for abstract high-level planning,” Journal of Artificial Intelligence Research, vol. 61, pp. 215–289,
2018.

[28] B. Ames, A. Thackston, and G. Konidaris, “Learning symbolic representations for planning with param-
eterized skills,” in 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pp. 526–533, IEEE, 2018.

[29] S. James, B. Rosman, and G. Konidaris, “Learning portable representations for high-level planning,” ICML,
2020.

[30] G. Konidaris and A. G. Barto, “Skill discovery in continuous reinforcement learning domains using skill
chaining,” in Advances in neural information processing systems, pp. 1015–1023, 2009.

[31] G. Konidaris, S. Kuindersma, R. Grupen, and A. Barto, “Robot learning from demonstration by constructing
skill trees,” The International Journal of Robotics Research, vol. 31, no. 3, pp. 360–375, 2012.

[32] A. M. Wells, N. T. Dantam, A. Shrivastava, and L. E. Kavraki, “Learning feasibility for task and motion
planning in tabletop environments,” IEEE robotics and automation letters, vol. 4, no. 2, pp. 1255–1262,
2019.

[33] D. Driess, O. Oguz, J.-S. Ha, and M. Toussaint, “Deep visual heuristics: Learning feasibility of mixed-
integer programs for manipulation planning,” in Proc. of the IEEE International Conference on Robotics
and Automation (ICRA), 2020.

[34] D. Driess, J.-S. Ha, and M. Toussaint, “Deep visual reasoning: Learning to predict action sequences for
task and motion planning from an initial scene image,” arXiv preprint arXiv:2006.05398, 2020.

[35] J. Oh, X. Guo, H. Lee, R. L. Lewis, and S. Singh, “Action-conditional video prediction using deep networks
in ATARI games,” in NIPS, pp. 2863–2871, 2015.

[36] P. Agrawal, A. V. Nair, P. Abbeel, J. Malik, and S. Levine, “Learning to poke by poking: Experiential
learning of intuitive physics,” in Advances in Neural Information Processing Systems, pp. 5074–5082,
2016.

[37] C. Finn and S. Levine, “Deep visual foresight for planning robot motion,” in ICRA, pp. 2786–2793, IEEE,
2017.

[38] D. Hafner, T. Lillicrap, I. Fischer, R. Villegas, D. Ha, H. Lee, and J. Davidson, “Learning latent dynamics
for planning from pixels,” in International Conference on Machine Learning, pp. 2555–2565, PMLR,
2019.

[39] M. Watter, J. Springenberg, J. Boedecker, and M. Riedmiller, “Embed to control: A locally linear latent
dynamics model for control from raw images,” in Advances in neural information processing systems,
pp. 2746–2754, 2015.

[40] E. Talvitie and S. P. Singh, “Simple local models for complex dynamical systems,” in Advances in Neural
Information Processing Systems, pp. 1617–1624, 2009.

6



[41] A. Dosovitskiy and V. Koltun, “Learning to act by predicting the future,” ICLR, 2017.

[42] J. Oh, S. Singh, and H. Lee, “Value prediction network,” in Advances in Neural Information Processing
Systems, pp. 6118–6128, 2017.

[43] B. Amos, L. Dinh, S. Cabi, T. Rothörl, S. G. Colmenarejo, A. Muldal, T. Erez, Y. Tassa, N. de Freitas, and
M. Denil, “Learning awareness models,” International Conference on Learning Representations, 2018.

[44] J. J. Kuffner and S. M. LaValle, “Rrt-connect: An efficient approach to single-query path planning,”
in Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and
Automation. Symposia Proceedings (Cat. No. 00CH37065), vol. 2, pp. 995–1001, IEEE, 2000.

[45] S. Chitta, I. Sucan, and S. Cousins, “Moveit![ros topics],” IEEE Robotics & Automation Magazine, vol. 19,
no. 1, pp. 18–19, 2012.

[46] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” CVPR, 2016.

[47] C. Finn, X. Y. Tan, Y. Duan, T. Darrell, S. Levine, and P. Abbeel, “Deep spatial autoencoders for visuomotor
learning,” in 2016 IEEE International Conference on Robotics and Automation (ICRA), pp. 512–519, IEEE,
2016.

7


	Introduction
	Method
	Planning with Affordances
	Deep Affordance Foresight (DAF)

	Experiments

