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Abstract

Safety remains a central obstacle preventing widespread use of RL in the real
world: learning new tasks in uncertain environments requires extensive exploration,
but safety requires limiting exploration. We propose Recovery RL, an algorithm
which navigates this tradeoff by (1) leveraging offline data to learn about constraint
violating zones before policy learning and (2) separating the goals of improving task
performance and constraint satisfaction across two policies: a task policy that only
optimizes the task reward and a recovery policy that guides the agent to safety when
constraint violation is likely. We evaluate Recovery RL on 6 simulation domains,
including two contact-rich manipulation tasks and an image-based navigation task,
and an image-based reaching task on a physical robot. We compare Recovery RL to
5 prior safe RL methods which jointly optimize for task performance and safety via
constrained optimization or reward shaping and find that Recovery RL outperforms
the next best prior method across all domains. Results suggest that Recovery RL
trades off constraint violations and task successes 2 - 80 times more efficiently in
simulation domains and 12 times more efficiently in physical experiments. See
https://tinyurl.com/rl-recovery for videos and supplementary material.

1 Introduction
Reinforcement learning (RL) provides a general framework for robots to acquire new skills, and has
shown promise in a variety of robotic domains such as navigation [26], locomotion [14], and manipu-
lation [19, 23]. However, enforcing constraints on the agent’s behavior to encourage safety during
learning and exploration is challenging, since constraint violating states and the states leading to
them may be initially unknown and must be learned from experience. Thus, safe exploration requires
navigating a tradeoff: learning new skills through environmental interaction requires exploring a wide
range of possible behaviors, but learning safely forces the agent to restrict exploration to constraint
satisfying states. Most prior work in safe RL integrates constraint satisfaction into the task objective
to jointly optimize the two [25, 29, 33–35]. However, two key issues which makes prior algorithms
for safe RL difficult to use in practice are (1) the inherent objective conflict between exploration and
safety and (2) excessive constraint violations due to no prior understanding of system constraints.

We take a step towards addressing these issues with two algorithmic ideas. First, inspired by recent
work in robust control [4, 11, 13, 21], we represent the RL agent with two policies: a task policy,
which optimizes the unconstrained task objective and a recovery policy, which takes control when
the task policy is in danger of constraint violations in the near future. Separating the task policy and
the recovery policy makes it easier to balance task performance and safety, and allows us to apply
off-the-shelf RL algorithms for learning each. Second, we leverage offline data to learn a recovery set,
which indicates regions of the MDP in which future constraint violations are likely, and a recovery
policy, which is queried within this set to prevent violations. This offline data can be collected by a
human or an agent under human supervision to provide controlled examples of constraint violations,
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Figure 1: Recovery RL: We illustrate Recovery RL on a 2D maze navigation task where a constraint violation
corresponds to hitting a wall. Recovery RL first learns safety critic Q̂π

φ ,risk with offline data from some behavioral
policy πb, which provides a small number of controlled demonstrations of constraint violating behavior as shown
on the left. For the purposes of illustration, we visualize the average of the Q̂π

φ ,risk learned by Recovery RL over
100 action samples. Then, at each timestep, Recovery RL queries the task policy πtask for some action a at state
s, evaluates Q̂π

φ ,risk(s,a), and executes the recovery policy πrec if Q̂π
φ ,risk(s,a)> εrisk and πtask otherwise. The

task policy, recovery policy, and safety critic are updated after each transition from agent experience.
such as gently tipping over a glass rather than aggressively knocking the glass over and shattering it.
Both the recovery set and policy are updated online with agent experience, but the offline data allows
the agent to observe constraint violations and learn from them without the task policy directly having
to experience too many uncontrolled violations during learning.

We present Recovery RL, a new algorithm for safe robotic RL. Unlike prior work, Recovery RL
(1) can effectively leverage offline data of constraint violations to learn about constraints before
interacting with the environment, and (2) uses separate policies for the task and recovery to learn
safely without significantly sacrificing task performance. We evaluate Recovery RL against 5 state-
of-the-art safe RL algorithms on 6 navigation and manipulation domains in simulation, including a
visual navigation task, and find that Recovery RL trades off constraint violations and task successes
2 - 80 times more efficiently than the next best prior method. We then evaluate Recovery RL on
a constrained image-based reaching task on a physical robot and find that Recovery RL trades off
constraint violations and task successes 12 times more efficiently than the next best prior algorithm.

2 Problem Statement
We consider RL under Markov decision processes (MDPs) with state and action spaces S and A
augmented with an additional constraint cost function C : S→{0,1} which indicates whether a state
is constraint violating. We assume that episodes terminate on constraint violation, which is equivalent
to transitioning to a constraint-satisfying absorbing state with zero reward.

The objective of Recovery RL is to solve the following constrained optimization problem:

π
∗ = argmax

π∈Π

{Rπ : Qπ
risk(s0,a0)≤ εrisk} (2.1)

where Qπ
risk(s0,a0) is the expected discounted probability of constraint violation given initial states

and actions s0 and a0 respectively.

This setting exactly corresponds to the CMDP formulation from [3], but with constraint costs limited
to binary indicator functions for constraint violating states. We limit the choice to binary indicator
functions, as they are easier to provide than shaped costs and use Qπ

risk to convey information about
delayed constraint costs. We additionally assume access to a set of transitions from offline data
(Doffline) that contains examples of constraint violations. Unlike demonstrations in typical imitation
learning settings, this data need not illustrate task successes, but rather shows possible ways to violate
constraints. We leverage Doffline to constrain exploration of the task policy to reduce the probability
of constraint violation during environment interaction.

3 Recovery RL
Recovery RL executes a composite policy π in the environment, which selects between a task-driven
policy πtask and a recovery policy πrec at each timestep based on whether the agent is in danger of
constraint violations in the near future. To quantify this risk, we use Qπ

risk to construct a recovery
set that contains state-action tuples from which π may not be able to avoid constraint violations. In
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practice, we learn a sampled-based approximation to Qπ
risk, Q̂π

φ ,risk. To convey information about
constraints before interaction with the environment, we pretrain Q̂π

φ ,risk on a set of offline transitions
Doffline that contain constraint violations. For details on how Q̂π

φ ,risk is trained both in the offline phase
and during online RL, see the supplementary material.

Then if the agent finds itself in the recovery set, it executes a learned recovery policy instead of πtask
to navigate back to regions of the MDP that are known to be sufficiently safe. Specifically, define two
complimentary sets: the safe set T π

safe and recovery set T π
rec:

T π
safe = {(s,a) ∈ S×A : Qπ

risk(s,a)≤ εrisk} T π
rec = S×A\T π

safe

We consider state-action tuple (s,a) safe if in state s after taking action a, executing π has a discounted
probability of constraint violation less than εrisk.

If the task policy πtask proposes an action aπtask at state s such that (s,aπtask) 6∈ T π
safe, then a recovery

action sampled from πrec is executed instead. The recovery policy πrec is also an RL agent, but
is trained to minimize Q̂π

φ ,risk(s,a) to reduce the risk of constraint violations under π . Let aπtask
t ∼

πtask(·|st) and aπrec
t ∼ πrec(·|st). Then π selects actions as follows:

at =

{
aπtask

t (st ,a
πtask
t ) ∈ T π

safe
aπrec

t (st ,a
πtask
t ) ∈ T π

rec
(3.1)

Recovery RL acts as a filtering mechanism that aims to block proposed actions that are likely to lead
to unsafe states, equivalent to modifying the environment that πtask operates in with new dynamics:

Pπrec
εrisk

(s′|s,a) =
{

P(s′|s,a) (s,a) ∈ T π
safe

P(s′|s,aπrec) (s,a) ∈ T π
rec

(3.2)

We train Q̂π
φ ,risk on samples from composite policy π since πtask is not executed directly in the

environment, but is rather filtered through π .

Recovery RL first pretrains Q̂π
φ ,risk and recovery policy πrec on a set of transitions Doffline containing

constraint violations. During online RL training, the agent actually executes π , which is an algorithmic
selection between policy πtask and πrec. Then, πtask, πrec, and Q̂π

φ ,risk are updated based on agent
experience. This process is summarized in Figure 1 and Algorithm 1 in the supplement. See the
supplement for implementation details on the recovery and task policies.

4 Experiments
We study whether Recovery RL can leverage offline data to effectively trade off task performance
and constraint satisfaction than prior algorithms, which jointly optimize for both, on a variety
of challenging robotic navigation and manipulation tasks both in simulation and the real world.
To quantify this tradeoff, we report the ratio of the cumulative number of task successes and the
cumulative number of constraint violations at each episode for Recovery RL and prior algorithms
(higher is better) averaged over 3 random seeds. See the supplement for detailed ablations of Recovery
RL and comparison algorithms and and further details on experimental setup and parameters.

Domains: We evaluate Recovery RL on a set of 6 simulation domains (see Figure 9 in the supplement)
and an image-based constrained reaching task on a physical robot (Figure 2). All experiments
involve policy learning under state space constraints, in which a constraint violation terminates the
current episode. This makes learning especially challenging, since constraint violations directly
preclude further exploration. This setting is reflective of a variety of real world environments, in
which constraint violations can require halting the robot due to damage to itself or its surrounding
environment. We consider three 2D navigation domains (Navigation 1, Navigation 2, Maze), two
contact rich manipulation tasks (Object Extraction, Object Extraction (Dynamic Obstacle)) and a
vision-based continuous control navigation task (Image Maze).

We then evaluate Recovery RL on an image-based constrained reaching task on the da Vinci Research
Kit (dVRK) [20] where the robot must guide its end effector within 2 mm of a target position from
two possible starting locations while avoiding a stay-out zone for the end effector in the center of the
workspace. The dVRK is cable-driven and has relatively imprecise controls, motivating closed-loop
control strategies to compensate for these errors [18]. Furthermore, the dVRK system has been used
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Figure 2: Experiments: Simulation Experiments (Left): In all navigation tasks, we find that Recovery RL
significantly outperforms prior methods with both model-free and model-based recovery policies, while for the
object extraction environments, Recovery RL with a model-based recovery policy significantly outperforms prior
algorithms while Recovery RL with a model-free recovery policy does not perform as well. We hypothesize
that this is due to the model-based recovery mechanism being better able to compensate for imperfections in
Q̂π

φ ,risk. The sawtooth pattern occurs due to constraint violations, which result in a sudden drop in the ratio;
Physical Experiments (Right): We evaluate Recovery RL on a constrained image-based reacher task on the
dVRK with a stay out zone in the center of the workspace. We supply all algorithms with an overhead RGB
image as input and find that Recovery RL significantly outperforms Unconstrained and LR.
in the past to evaluate safe RL algorithms [35] due to its high cost and the delicate structure of its
arms, which make safe learning critical. Exact environment, task, and data collection details can be
found in the supplement for all simulation and physical experiments.

Comparisons: We compare Recovery RL to algorithms which ignore constraints (Unconstrained)
and enforce constraints by implementing constraints into the policy optimization objective (LR,
SQRL, RSPO) or employing reward shaping (RP, RCPO). See the supplement for details on the
comparison algorithms. All of these algorithms are implemented with the same base algorithm for
learning the task policy (Soft Actor Critic [15]) and all but Unconstrained and RP are modified
to use the same safety critic Q̂π

φ ,risk which is pretrained on Doffline for all methods. Thus, the key
difference between Recovery RL and prior methods is how Q̂π

φ ,risk is utilized: the comparisons use a
joint objective which uses Q̂π

φ ,risk to train a single policy that optimizes for both task performance and
constraint satisfaction, while Recovery RL separates these objectives across two sub-policies. We
tune all prior algorithms and report the best hyperparameter settings found on each task for the ratio
based evaluation metric introduced above.

Simulation Experiments: We study the performance of Recovery RL and prior methods in all
simulation domains in Figure 2. Results suggest that Recovery RL with both model-free and model-
based recovery mechanisms significantly outperform prior algorithms across all 3 2D pointmass
navigation environments (Navigation 1, Navigation 2, Maze) and the visual navigation environment
(Image Maze). In the Object Extraction environments, we find that Recovery RL with model-
based recovery significantly outperforms prior algorithms, while Recovery RL with a model-free
recovery mechanism does not perform nearly as well. We hypothesize that the model-based recovery
mechanism is better able to compensate for noise in Q̂π

φ ,risk, resulting in a more robust recovery
policy. We find that the prior methods often struggle as they tend to sacrifice either safety or task
performance, while Recovery RL is generally able to effectively optimize for task performance in the
safe MDP defined by the recovery policy. We study this further in the supplement.

Physical Experiment: We evaluate Recovery RL and prior algorithms on an image-based reaching
task with delta-position control on the da Vinci Research Kit in Figure 2. See Figure 2 for an
illustration of the experimental setup. We find that Recovery RL substantially outperforms prior
methods, suggesting that Recovery RL can be used for visuomotor control on physical robots.
5 Conclusion
We present Recovery RL, a new algorithm for safe RL which is able to more effectively balances task
performance and constraint satisfaction than 5 state-of-the-art prior algorithms for safe RL across
6 simulation domains and an image-based constrained reaching task on a physical robot. In future
work we hope to (1) explore further evaluation on physical robots, (2) establish formal guarantees,
and (3) leverage ideas from offline RL to more effectively pretrain the recovery policy.
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Recovery RL: Safe Reinforcement Learning with
Learned Recovery Zones Supplementary Material

The supplementary material is structured as follows: In Section A we discuss brief theoretical
motivation for Recovery RL and possible variants and in Section B we discuss algorithmic details for
Recovery RL and comparison algorithms. We then further expand on related work in Section C. In
Section D we present critical ablations of Recovery RL, in Section E, we report additional metrics
for all domains and comparisons and in Section F, we report results for additional ablation studies
evaluating hyperparameter sensitivity of Recovery RL. We qualitatively demonstrate the sensitivity
by providing visualizations of the safety critic in Section G. We provide additional details about
algorithm implementation in Section H, and on domain implementation in Section I. Finally, we
report domain-specific algorithm hyperparameters in Section J.

A Recovery RL Theoretical Motivation and Variants
In this section, we will briefly and informally discuss additional properties of Recovery RL and then
discuss some variants of Recovery RL.

A.1 Theoretical Motivation

Recall from Section 3, that the task policy is operating in an environment with modified dynamics:

Pπrec
εrisk

(s′|s,a) =
{

P(s′|s,a) (s,a) ∈ T π
safe

P(s′|s,aπrec) (s,a) ∈ T π
rec

(A.1)

However, Pπrec
εrisk changes over time (even within the same episode) and analysis of policy learning

in non-stationary MDPs is currently challenging and ongoing work. Assuming that Pπrec
εrisk is sta-

tionary following the pretraining phase, it is immediate that πtask is operating in a stationary MDP
M′ = (S,A,Pπrec

εrisk ,R(·, ·),γ,µ), and therefore all properties of πtask in stationary MDPs apply in M′.
Observe that iterative improvement for πtask in M′ implies iterative improvement for π in M, since
both MDPs share the same reward function, and an action taken by πtask in M′ is equivalent to πtask
trying the action in M before being potentially caught by πrec.

A.2 Safety Value Function

One variant of Recovery RL can use a safety critic that is a state-value function V π
risk(s) instead of a

state-action-value function. While this implementation is simpler, the Qπ
risk version used in the paper

can switch to a safe action instead of an unsafe one instead of waiting to reach an unsafe state to start
recovery behavior.

A.3 Reachability-based Variant

Another variant can use the learned dynamics model in the model-based recovery policy to perform
a one (or k) step lookahead to see if future states-action tuples are in T π

safe. While Qπ
risk in principle

carries information about future safety, this is an alternative method to check future states.

B Algorithm Details
B.1 Problem Statement

We consider RL under Markov decision processes (MDPs), which can be described by the tuple
M = (S,A,P(·|·, ·),R(·, ·),γ,µ) where S and A are the state and action spaces. The stochastic
dynamics model P : S×A×S → [0,1] maps a state and action to a probability distribution over
subsequent states, γ ∈ [0,1] is a discount factor, µ is the initial state distribution (s0 ∼ µ), and
R : S ×A→ R is the reward function. We augment the MDP with an additional constraint cost
function C : S → {0,1} which indicates whether a state is constraint violating and an associated
discount factor γrisk ∈ [0,1]. This yields the following new MDP: (S,A,P(·|·, ·),R(·, ·),γ,C(·),γrisk).
We assume that episodes terminate on constraint violation, which is equivalent to transitioning to a
constraint-satisfying absorbing state with zero reward.

Let Π be the set of Markovian stationary policies. Given policy π ∈Π, the expected return is defined
as Rπ = Eπ,µ,P [

∑
t γ tR(st ,at)] and the expected discounted probability of constraint violation is
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defined as Qπ
risk(si,ai) = Eπ,µ,P

[∑
t γ t

riskC(st+i)
]
=
∑

t γ t
riskP(C(st+i) = 1), which we would like to

be below a threshold εrisk ∈ [0,1]. The objective of Recovery RL is to solve the following constrained
optimization problem:

π
∗ = argmax

π∈Π

{Rπ : Qπ
risk(s0,a0)≤ εrisk} (B.1)

This setting exactly corresponds to the CMDP formulation from [3], but with constraint costs limited
to binary indicator functions for constraint violating states. We limit the choice to binary indicator
functions, as they are easier to provide than shaped costs and use Qπ

risk to convey information about
delayed constraint costs. We define the set of feasible policies,

{
π : Qπ

risk ≤ ε
}

, the set of ε-safe
policies Πε . Observe that if γrisk = 1, then by the assumption of termination on constraint violation,
Qπ

risk(si,ai) = P(
⋃

t C(st) = 1), or the probability of a constraint violation in the future. Setting
εrisk = 0 as well results in a robust optimal control problem.

We present an algorithm to optimize equation (B.1) by utilizing a pair of policies, a task policy πtask,
which is trained to maximize Rπ over πtask ∈Π and a recovery policy πrec, which attempts to guide
the agent back to a state-action tuple (s,a) where Qπ

risk(s,a)≤ εrisk. We additionally assume access to
a set of transitions from offline data (Doffline) that contains examples of constraint violations. Unlike
demonstrations in typical imitation learning settings, this data need not illustrate task successes, but
rather shows possible ways to violate constraints. We leverage Doffline to constrain exploration of the
task policy to reduce the probability of constraint violation during environment interaction.

B.2 Recovery RL
Safety Critic Training: As in Srinivasan et al. [29], Recovery RL learns a critic function Qπ

risk that
estimates the discounted future probability of constraint violation of the policy π being executed
currently in the environment:

Qπ
risk(st ,at) = Eπ

[
∞∑

t ′=t

γ
t ′−t
risk C(st ′)|st ,at

]
=C(st)+(1−C(st))γriskEπ [Qπ

risk(st+1,at+1)|st ,at ] .

(B.2)

This is different from the standard Bellman equations for solving MDPs due to the assumption that
episodes terminate when C(st) = 1. In practice, we train a sample-based approximation Q̂π

φ ,risk,
parameterized by φ , by approximating these equations using sampled transitions (st ,at ,st+1,C(st)).

We train Q̂π
φ ,risk by minimizing the following MSE loss with respect to the target (RHS of equa-

tion B.2).

Jrisk(st ,at ,st+1;φ) =

1
2

(
Q̂π

φ ,risk(st ,at)− (C(st)+(1−C(st))γrisk E
at+1∼π(·|st+1)

[Q̂π
φ ,risk(st+1,at+1)])

)2 (B.3)

In practice, we use a target network to create the targets as in prior work [15, 29]. Recovery Policy:
In principle, any off-policy reinforcement learning algorithm can be used to learn the recovery policy
πrec. In this paper, we explore both model-free and model-based reinforcement learning algorithms to
learn πrec. For model-free recovery, we perform gradient descent on the safety critic Q̂π

φ ,risk(s,πrec(s)),
as in the popular off-policy reinforcement learning algorithm DDPG [22]. We choose the DDPG-style
objective function over alternatives since we do not wish the recovery policy to explore widely. For
model-based recovery, we perform model predictive control (MPC) over a learned dynamics model
fθ by minimizing the following objective:

Lθ (st ,at) = E

[
H∑

i=0

Q̂π
φ ,risk(ŝt+i,at+i)

]
(B.4)

where ŝt+i+1 ∼ fθ (ŝt+i,at+i), ŝt = st , and â = at . For lower dimensional tasks, we utilize the PETS
algorithm from Chua et al. [8] to plan over a learned stochastic dynamics model while for tasks with
visual observations, we utilize a VAE based latent dynamics model. In the offline pretraining phase,
when model-free recovery is used, batches are sampled sequentially from Doffline and each batch is
used to (1) train Q̂π

φ ,risk by minimizing the loss in equation B.3 and (2) optimize the DDPG policy
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to minimize the current Q̂π
φ ,risk. When model-based recovery is used, the data in Doffline is first used

to learn dynamics model fθ using either PETS (low dimensional tasks) or latent space dynamics
(image-based tasks). Then, Q̂π

φ ,risk is separately optimized to minimize the loss from equation B.3
over batches sampled from Doffline. During the online RL phase, all methods are updated online using
on-policy data from composite policy π .

Task Policy: In experiments, we utilize the popular maximum entropy RL algorithm SAC [15] to
learn πtask, but note that any RL algorithm could be used to train πtask. In general πtask is only updated
in the online RL phase. However, in certain domains where exploration is challenging, we pre-train
SAC on a small set of task-specific demonstrations to expedite learning. To do this, like for training
the model-free recovery policy, we sample batches sequentially from Doffline and each batch is used to
(1) train Q̂π

φ ,risk by minimizing the loss in equation B.3 and (2) optimize the SAC policy to minimize
the current Q̂π

φ ,risk. To ensure that πtask learns which actions result in recovery behavior, we train πtask

on transitions (st ,a
πtask
t ,st+1) even if πrec was executed as noted in Section 3.

Algorithm 1 Recovery RL

Require: Doffline, task horizon H, number of episodes N
1: Pretrain πrec and Q̂π

φ ,risk on Doffline
2: Dtask← /0, Drec←Doffline
3: s0← env.reset()
4: for i ∈ {1, . . .N} do
5: for t ∈ {1, . . .H} do
6: if C(st) = 1 or is_terminal(st ) then
7: st ← env.reset()
8: end if
9: aπtask

t ∼ πtask(·|st) . Query task policy
10: . Check if task policy will be unsafe
11: if (st ,a

πtask
t ) ∈ T π

rec then
12: at ∼ πrec(·|st) . Select recovery policy
13: else
14: at = aπtask

t . Select task policy
15: end if
16: Execute at , observe st+1, rt = R(st ,at), ct =C(st)
17: . Relabel transition
18: Dtask←Dtask∪{(st ,a

πtask
t ,st+1,rt)}

19: Drec←Drec∪{(st ,at ,st+1,ct)}
20: Train πtask on Dtask, πrec and Q̂π

φ ,risk on Drec . Eq. B.3
21: end for
22: end for

Algorithm Overview: Recov-
ery RL first pretrains Q̂π

φ ,risk and
recovery policy πrec on a set
of transitions Doffline containing
constraint violations. During on-
line RL training, the agent actu-
ally executes π , which is an algo-
rithmic selection between policy
πtask and πrec. This process is
summarized in Algorithm 1 and
Figure 1.

Action Relabeling: It is easy
to see that the proposed recovery
mechanism will shield the agent
from regions in which constraint
violations are likely if Q̂π

φ ,risk
is correct and executing πrec re-
duces its value. However, this
poses a potential concern: while
the agent may be safe, how do
we ensure that πtask can make
progress in the new MDP defined
in equation A.1? Suppose that
πtask proposes an unsafe action
aπtask

t under Q̂π
φ ,risk. Then, Recov-

ery RL executes a recovery ac-
tion aπrec

t and observes transition
(st ,a

πrec
t ,st+1,rt) in the environ-

ment. However, if πtask is updated with this observed transition, it will not learn to associate its
proposed action (aπtask

t ) in the new MDP with rt and st+1. To address this issue, for training πtask, we
relabel all actions with the action proposed by πtask. Thus, instead of training πtask with executed
transitions (st ,at ,st+1,rt), πtask is trained with transitions (st ,a

πtask
t ,st+1,rt). This ties into the inter-

pretation of defining a safe MDP with dynamics Pπrec
εrisk (s

′|s,a) for πtask to act in since all transitions
for training πtask are relabeled as if πtask was executed directly.

Offline Pretraining: To convey information about constraints before interaction with the environ-
ment, we provide the agent with a set of transitions Doffline that contain constraint violations for
pretraining. While this requires violating constraints in the environment, a human may be able to
carefully demonstrate these unsafe transitions in a relatively controlled manner (e.g. gently tipping
over a glass) so that the robot does not need to accidentally learn them online (e.g. knocking the
glass off the table). We pretrain Q̂π

φ ,risk by minimizing Equation B.3 over offline batches sampled
from Doffline. We additionally pretrain πrec using the data in Doffline. Note that any RL algorithm can
be used to represent πtask while any off-policy RL algorithm can be used to learn πrec. For some

9



environments in which exploration is challenging, we utilize a separate set of task demonstrations to
initialize πtask to expedite learning.

B.3 Unconstrained

We use an implementation of the popular model-free reinforcement learning algorithm Soft Actor
Critic [15, 31], which maximizes a combination of task reward and policy entropy with a stochastic
actor function.

B.4 Lagrangian Relaxation (LR)

In this section we will briefly motivate and derive the Lagrangian relaxation baseline. As before, we
desire to solve the following constrained optimization problem:

min
π

Lpolicy(s;π) s.t. Ea∼π(·|s) [Q
π
risk(s,a)]≤ εrisk

where Lpolicy is a policy loss function we would like to minimize (e.g. from SAC). As in prior work
in solving constrained optimization problems, we can solve the following unconstrained problem
instead:

max
λ≥0

min
π

Lpolicy(s;π)+λ (Ea∼π(·|s) [Q
π
risk(s,a)]− εrisk)

We aim to find a saddle point of the Lagrangian function via dual gradient descent. In practice, we
use samples to approximate the expectation in the objective by sampling an action from π(·|s) each
time the objective function is evaluated.

B.5 Risk Sensitive Policy Optimization (RSPO)

We implement Risk Sensitive Policy Optimization by implementing the Lagrangian Relaxation
method as discussed in Section B.4 with a sequence of multipliers which decrease over time. This
encourages initial constraint satisfaction followed by gradual increase in prioritization of the task
objective and is inspired by the Risk Sensitive Q-learning algorithm from [28].

B.6 Safety Q-Functions for Reinforcement Learning (SQRL)

This baseline is identical to LR, except it additionally adds a Q-filter, that performs rejection sampling
on the policy’s distribution π(·|st) until it finds an action at such that Qπ

risk(st ,at)≤ εrisk.

B.7 Reward Penalty (RP)

The reward penalty comparison simply involves subtracting a constant penalty λ from the task
reward function when a constraint is violated. This is the only comparison algorithm other than
Unconstrained which does not use the learned Qπ

risk or the constraint demos, but is included due to its
surprising efficacy and simplicity.

B.8 Off Policy Reward Constrained Policy Optimization (RCPO)

In on-policy RCPO [33], the policy is optimized via policy gradient estimators by maximizing
Eπ

[∑
∞

t=0
(
γ tR(s,a)−λγ t

riskD(s,a)
)]

. In this work, we use D(s,a) = Qπ
risk(s,a) and update the

Lagrange multiplier λ as in LR. We could also use D(s,a) =C(s), which would be almost identical
to the RP baseline. Instead of optimizing this with on-policy RL, we use SAC to optimize it in an
off-policy fashion to be consistent with the other comparisons.

C Related Work
Prior work has studied safety in RL in several ways, including imposing constraints on expected
return [1, 33], risk measures [17, 28, 30, 32], and avoiding regions of the MDP where constraint
violations are likely [4, 5, 10, 12, 35, 36]. We build on the latter approach, and design an algorithm
which uses a learned recovery policy to keep the RL agent within a learned safe region of the MDP.

Jointly Optimizing for Task Performance and Constraint Satisfaction: A popular strategy in
algorithms for safe RL involves modifying the policy optimization procedure of standard RL algo-
rithms to simultaneously reason about both task reward and constraints using methods such as trust
regions [1], optimizing a Lagrangian relaxation [25, 29, 33], or constructing Lyapunov functions [6,
7]. The most similar of these works to Recovery RL is [29]. Srinivasan et al. [29] trains a safety critic,
which estimates the probability of future constraint violation under the current policy, and optimizes
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a Lagrangian objective function to limit the probability of constraint violations while maximizing
task reward. Unlike Srinivasan et al. [29], which uses the safety critic to modify the task policy
optimization objective, Recovery RL uses it to determine when to execute a learned recovery policy
which minimizes the safety critic to keep the agent in safe regions of the MDP. This idea enables
Recovery RL to more effectively balance task performance and constraint satisfaction than algorithms
which jointly optimize for task performance and safety.

Restricting Exploration with an Auxiliary Policy: Another approach to safe RL explicitly restricts
policy exploration to a safe subset of the MDP using a recovery or shielding mechanism. This idea has
been explored in [4, 11], which utilize Hamilton-Jacobi reachability analysis to define a task policy
and safety controller, and in the context of shielding [2, 13, 21]. In contrast to these works, which
assume approximate knowledge of system dynamics [2, 4, 11, 13, 21] or require precise knowledge
of constraints apriori [2], Recovery RL learns information about the MDP, such as constraints and
dynamics, from experience and can scale to high-dimensional state spaces. Additionally, Recovery
RL reasons about probabilistic constraints rather than robust constraints, allowing it to estimate a
safe set without a dynamics model. Han et al. [16] and Eysenbach et al. [10] introduce reset policies
which are trained jointly with the task policy to reset the agent to its initial state distribution, ensuring
that the task policy only learns behaviors which can be reset [10]. However, enforcing the ability
to fully reset can be impractical or inefficient. Inspired by this work, Recovery RL instead executes
approximate resets to nearby safe states when constraint violation is probable. Similar to Recovery
RL, Richter et al. [26] learns the probability of constraint violation conditioned on an action plan
to activate a hand-designed safety controller. In contrast, Recovery RL uses a learned recovery
mechanism which can be broadly applied across different tasks.

Leveraging Demonstrations for Safe RL and Control: Finally, there has also been significant
prior work investigating how demonstrations can be leveraged to enable safe exploration. Rosolia
et al. [27] and Thananjeyan et al. [34] introduce model predictive control algorithms which leverage
initial constraint satisfying demonstrations to iteratively improve their performance with safety
guarantees and Thananjeyan et al. [35] extends these ideas to the RL setting. In contrast to these
works, Recovery RL learns a larger safe set that explicitly models future constraint satisfaction
and also learns the problem constraints from prior experience without task specific demonstrations.
Additionally, Recovery RL can be applied with either model-free or model-based RL algorithms
while [34, 35] require a dynamics model to evaluate reachability-based safety online.

D Ablations
We ablate different components of Recovery RL and study the sensitivity of Recovery RL to the
number of transitions in Doffline for the Object Extraction domain in Figure 3. Results suggest
that Recovery RL performs much more poorly when πrec and Q̂π

φ ,risk are not pretrained with data
from Doffline, indicating the value of learning to reason about safety before environment interaction.
However, when πrec and Q̂π

φ ,risk are not updated online, performance degrades much less significantly.
A key component of Recovery RL is relabeling actions when training the task policy so that πtask
can learn to associate its proposed actions with their outcome (Section 3). We find that without
this relabeling, Recovery RL achieves very poor performance as it rarely achieves task successes.
Additionally, we find that although the reported simulation experiments supply Recovery RL and all
prior methods with 20,000 transitions in Doffline for the Object Extraction task, Recovery RL is able
to achieve good performance with just 1000 transitions in Doffline, with performance significantly
degrading only when the size of Doffline is reduced to less than this amount.

E Additional Experimental Metrics
In Figure 4 and Figure 5, we report cumulative task successes and constraint violations for all methods
for all simulation experiments. We report these statistics for the image reacher physical experiment
in Figure 6. We observe that Recovery RL is generally very successful across most domains with
relatively few violations. Some more successful comparisons tend to have many more constraint
violations. We also report empirical probabilities for when constraint violations occur in Table 1,
which suggests that in most tasks the recovery policy is already activated by Recovery RL when the
violations do occur.

F Hyperparameter Sensitivity Experiments
We tune hyperparameters for Recovery RL and all prior methods to ensure a fair comparison. All
algorithms are provided with the same offline data Doffline. We first tune γrisk and εrisk for Recovery
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Figure 3: Ablations: We first study the affect of different algorithmic components of Recovery RL (left).
Results suggest that offline pretraining of πrec and Q̂π

φ ,risk is critical for good performance, while removing
online updates leads to a much smaller reduction in performance. Furthermore, we find that the action relabeling
method for training πtask ( Section 3) is critical for good performance. We then study the sensitivity of Recovery
RL with model-based recovery to the number of offline transitions used to pretrain πrec and Q̂π

φ ,risk (right) and
find that Recovery RL performs well even with just 1000 transitions in Doffline for the Object Extraction task,
with performance degrading when the number of transitions is reduced beyond this point.

Figure 4: Simulation Experiments Cumulative Successes: We plot the cumulative task successes for each
algorithm in each simulation domain and observe that Recovery RL (green), is generally among the most
successful algorithms. In the cases that it has lower successes, we observe that it is safer (Figure 5). We find that
Recovery RL has a higher or comparable task success rate to the next best algorithm on all environments except
for the Object Extraction (Dynamic Obstacle) environment.

Figure 5: Simulation Experiments Cumulative Violations: We plot the cumulative constraint violations for
each algorithm in each of the simulation domains and observe that Recovery RL (green), is among the safest
algorithms across all domains. In the cases where it is less safe than a comparison, it has a higher task success
rate (Figure 4).
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Figure 6: Physical Experiments Successes and Violations: We plot the cumulative constraint violations and
task successes the image reacher task on the dVRK. We observe that Recovery RL is both more successful and
safer than LR and unconstrained.

Table 1: Constraint Violations Breakdown: We report what percentage of constraint violations for each
environment occur when the recovery policy is activated. If most constraint violations occur when the recovery
policy is active, this indicates that the safety critic is likely relatively accurate while if this is not the case, it is
likely that most constraint violations are due to imperfections in the safety critic itself rather than the recovery
policy. We note that if the safety critic detects the need for recovery behavior too late, then these errors will be
attributed to the recovery policy here. We find that for the low dimensional Maze and both Object Extraction
environments, most constraint violations occur when the recovery policy is activated. In Navigation 1, none
occur when the recovery policy is executed, but in this environment constraints are almost never violated by
Recovery RL. In the Image Maze and Image Reacher tasks, we find that most violations occur when the recovery
policy is not activated, which indicates that the bottleneck in these tasks is the quality of the safety critic. In
Navigation 2, Recovery RL never violates constraints and only model-free recovery was run for Recovery RL on
the Image Reacher task on the physical robot.

Navigation 1 Navigation 2 Maze Object Extraction Object Extraction (Dynamic Obstacle) Image Maze Image Reacher
MF Recovery 0.00±0.00 N/A 0.936±0.059 0.992±0.004 0.943±0.012 0.194±0.100 0.000±0.000
MB Recovery 0.00±0.00 N/A 0.938±0.063 0.944±0.055 0.833±0.167 0.167±0.167 N/A

RL, and then use the same γrisk and εrisk for all other algorithms to ensure that all algorithms utilize
the same training procedure for the safety critic. These two hyperparameters are the only two
hyperparameters we tune for Recovery RL and SQRL. For the RP, RCPO, and LR comparisons we
tune the penalty term λ with γrisk and εrisk fixed as mentioned above. For RSPO, we utilize a schedule
which decays λ from 2 times the best value found for λ when tuning the LR baseline to 0 with an
evenly spaced linear schedule over all training episodes.

In Figure 7, we study the sensitivity of Recovery RL with model-based recovery and the RP, RCPO,
and LR comparisons to different hyperparameter choices on the Object Extraction task. For Recovery
RL, we consider sensitivity to εrisk over 3 values of γrisk while for the comparison algorithms we con-
sider sensitivity to the penalty term λ . We find that Recovery RL is less sensitive to hyperparameters
than the other baselines for the γrisk values we consider.

G Safety Critic Visualizations
We visualize the safety critic after pretraining for the navigation domains in Figure 8 and observe
that increasing γrisk results in a more gradual increase in regions near obstacles. Increasing γrisk

Figure 7: Sensitivity Experiments: We visualize the final number of task successes and constraint violations
at the end of training for Recovery RL and comparison algorithms for a variety of different hyperparameter
settings. We find that the comparison algorithms are relatively sensitive to the value of the penalty parameter
λ while given a fixed γrisk, Recovery RL achieves relatively few constraint violations while maintaining task
performance over a range of εrisk values.
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Figure 8: Q̂π
φ ,risk Visualization: We plot the safety critic Qπ

risk for the navigation environments using the cardinal
directions (left, right, up, down) as action input. We see that as γrisk is increased, the gradient is lower, and the
the function more gradually increases as it approaches the obstacles. Increasing γrisk essentially increases the
amount of information preserved from possible future constraint violations, allowing them to be detected earlier.
These plots also illustrate action conditioning of the safety critic values. For example, the down action marks
states as more unsafe than the up action directly above walls and obstacles.
carries more information about possible future violations in Qπ

risk(s,a). However, increasing γrisk too
much causes the safety critic to bleed too much throughout the state-action space as in the right-most
column, making it difficult to distinguish between safe and unsafe states.

H Implementation Details
Here we overview implementation and hyperparameter details for Recovery RL and all baselines.
The recovery policy (πrec) and task policy (πtask) are instantiated and trained in both the offline phase,
in which data from Doffline is used to pre-train the recovery policy, and the online phase, in which
Recovery RL updates the task policy with its exploration constrained by the learned safety critic and
recovery policy. The safety critic and recovery policy are also updated online.

For all experiments, we build on the PyTorch implementation of Soft Actor Critic [14] provided
in [31] and all trained networks are optimized with the Adam optimizer with a learning rate of
3e−4. We first overview the hyperparameters and training details shared across Recovery RL and
baselines in Section H.2 and then discuss the implementation of the recovery policy for Recovery RL
in Section H.3.

H.1 Network Architectures

For low dimensional experiments, we represent the critic with a fully connected neural network with
2 hidden layers of size 256 each with ReLU activations. The policy is also represented with a fully
connected network with 2 hidden layers of size 256 each, uses ReLU activations, and outputs the
parameters of a conditional Gaussian. We use a deterministic version of the same policy for the
model-free recovery policy. For image-based experiments, we represent the critic with a convolutional
neural network with 3 convolutional layers to embed the input image and 2 fully connected layers to
embed the input action. Then, these embeddings are concatenated and fed through two more fully
connected layers. All fully connected layers have 256 hidden units each. We utilize 3 convolutional
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layers, with 128, 64, and 16 filters respectively. All layers utilize a kernel size of 3, stride of 2, and
padding of 1. ReLU activations are used between all layers, and batch normalization units are added
for the convolutional layers. For all algorithms which utilize a safety critic (Recovery RL, LR, SQRL,
RSPO, RCPO), Qπ

risk is represented with the same architecture as the task critic except that a sigmoid
activation is added at the output head to ensure that outputs are on [0,1] in order to effectively learn
the probability of constraint violation. The task and model-free recovery policies also use the same
architectures for image-based experiments, except that they output the parameters of a conditional
Gaussian over the action space or an action, respectively.

H.2 Global Training Details

To prevent overestimation bias, we train two copies of all critic networks to compute a pessimistic
(min for task critic, max for safety critic) estimate of the Q-values. Each critic is associated with
a target network, and Polyak averaging is used to smoothly anneal the parameters of the target
network. We use a replay buffer of size 1000000 and target smoothing coefficient τ = 0.005 for all
experiments except for the manipulation environments, in which a replay buffer of size 100000 and
target smoothing coefficient τ = 0.0002. All networks are trained with batches of 256 transitions.
Finally, for SAC we utilize entropy regularization coefficient α = 0.2 and do not update it online.
We take a gradient step with batch size 1000 to update the safety critic after each timestep. We also
update the model free recovery policy if applicable with the same batch at each timestep. If using a
model-based recovery policy, we update it for 5 epochs at the end of each episode. For pretraining,
we train the safety critic and model-free recovery policy for 10,000 steps. We train the model-based
recovery policy for 50 epochs.

H.3 Recovery Policy Training Details

In this section, we describe the neural network architectures and training procedures used by the
recovery policies for all tasks.

H.3.1 Model-Free Recovery

The model-free recovery policy uses the same architecture as the task policy for all tasks, as described
in Section H.1. However, it directly outputs an action in the action space instead of a distribution
over the action space and greedily minimizes Q̂π

φ ,risk rather than including an entropy regularization
term as in [15]. The recovery policy is trained at each timestep on a batch of 1000 samples from the
replay buffer.

H.3.2 Model-Based Recovery Training Details

For the non-image-based model-based recovery policy, we use PETS [8, 37], which trains and
plans over a probabilistic ensemble of neural networks. We use an ensemble of 5 neural net-
works with 3 hidden layers of size 200 and swish activations (except at the output layer) to
output the parameters of a conditional Gaussian distribution. We use the TS-∞ trajectory sam-
pling scheme from Chua et al. [8] and optimize the MPC optimization problem with 400 sam-
ples, 40 elites, and 5 iterations for all environments. For image-based tasks, we utilize a VAE
based latent dynamics model as in Nair et al. [24]. We train the encoder, decoder, and dy-
namics model jointly where the encoder and decoder and convolutional neural networks and
the forward dynamics model is a fully connected network. We follow the same architecture as
in Nair et al. [24]. For the encoder we utilize the following convolutional layers (channels, kernel
size, stride): [(32,4,2),(32,3,1),(64,4,2),(64,3,1),(128,4,2),(128,3,1),(256,4,2),(256,3,1)]
followed by fully connected layers of size [1024,512,2L] where L is the size of the latent space
(predict mean and variance). All layers use ReLU activations except for the last layer. The decoder
takes a sample from the latent space of dimension L and then feeds this through fully connected
layers [128,128,128] which is followed by de-convolutional layers (channels, kernel size, stride):
[(128,5,2),(64,5,2),(32,6,2),(3,6,2)]. All layers again use ReLU activations except for the last
layer, which uses a Sigmoid activation. For the forward dynamics model, we use a fully connected
network with layers [128,128,128,L] with ReLU activations on all but the final layer.

I Environment Details
In this section, we provide additional details about each of the environments used for evaluation. We
illustrate all simulation domains in Figure 9 below.
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Figure 9: Simulation Experiments Domains: We evaluate Recovery RL on a set of 2D navigation tasks, two
contact rich manipulation environments, and a visual navigation task. In Navigation 1 and 2, the goal is to
navigate from the start set to the goal set without colliding into the obstacles (red) while in the Maze navigation
tasks, the goal is to navigate from the left corridor to the red dot in the right corridor without colliding into
walls/borders. In both object extraction environments, the objective is to grasp and lift the red block without
toppling any of the blocks or colliding with the distractor arm (Dynamic Obstacle environment).
I.1 Navigation Environments

1. Navigation 1 and 2: This environment has single integrator dynamics with additive Gaus-
sian noise sampled from N (0,σ2I2) where σ = 0.05 and drag coefficient 0.2. The start
location is sampled from N

(
(−50,0)>, I2

)
and the task is considered successfully com-

pleted if the agent gets within 1 unit of the origin. We use negative Euclidean distance from
the goal as a reward function. Methods that use a safety critic are given 8000 transitions of
data for pretraining.

2. Maze: This environment is implemented in MuJoCo and we again use negative Euclidean
distance from the goal as a reward function. Methods that use a safety critic are given
10,000 transitions of data for pretraining.

I.2 Manipulation Environments

In the object extraction environments, the goals is to extract one of the blocks without toppling any of
the other blocks, and in the case of Object Extraction (Dynamic Obstacle), also avoiding contact with
a dynamic obstacle which moves in and out of the workspace. We build both environments on top of
the cartgripper environment in the visual foresight repository [9]. The robot can translate in cardinal
directions and open/close its grippers.

1. Object Extraction: This environment is implemented in MuJoCo, and the reward function
is −1 until the red object is grasped and lifted, at which point it is 0 and the episode termi-
nates. Constraint violations are determined by checking whether any object’s orientation is
rotated about the x or y axes by at least 15 degrees. All methods that use a safety critic are
given 20,000 transitions of data for pretraining. All methods are given 1000 transitions of
task demonstration data to pretrain the task policy’s critic function.

2. Object Extraction (Dynamic Obstacle): This environment is implemented in MuJoCo,
and the reward function is −1 until the object is grasped and lifted, at which point it is 0
and the episode terminates. Constraint violations are determined by checking whether any
object’s orientation is rotated about the x or y axes by at least 15 degrees. Additionally, there
is a distractor arm that is moving back and forth in the workspace in a periodic fashion. Arm
collisions are also considered constraint violations. All methods that use a safety critic are
given 20,000 transitions of data for pretraining. All methods are given 1000 transitions of
task demonstration data to pretrain the task policy’s critic function.

I.3 Image Maze

Image Maze is a shorter horizon version of Maze, but the agent is only provided with image
observations rather than its (x,y) position in the environment. This maze is also implemented in
MuJoCo with different walls from the maze that has ground-truth state (Figure 9). Constraint
violations occur if the robot collides with a wall. All methods are only supplied with RGB images as
input, and all methods that use the safety critic are supplied with 20,000 transitions for pretraining.

I.4 Physical Experiments

Physical experiments are run on the da Vinci Research Kit (dVRK) [20], a cable-driven bilateral
surgical robot. Observations are recorded and supplied to the policies from a Zivid OnePlus RGBD
camera. However, we only use RGB images, as the capture rate is much faster. End effector position
is checked by the environment using the robot’s odometry to check constraint violations and task
completion, but this is not supplied to any of the policies. In practice, the robot’s end effector position
can be slightly inaccurate due to cabling effects such as hysteresis [18], but we ignore these effects
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in this paper. All methods that use a safety critic are supplied with 10,000 transitions of data for
pretraining, which takes around 3 hours to collect. To reduce extrapolation errors during learning, we
sample a start state on the right side of the obstacle with probability 0.5 and sample one on the left
side of the obstacle otherwise, as depicted in Figure 2.

J Environment Specific Algorithm Parameters
We use the same γrisk and εrisk for LR, RSPO, SQRL, and RCPO. For LR, RSPO, and SQRL, we find
that the initial choice of λ strongly affects the overall performance of this algorithm and heavily tune
this. We use the same values of λ for LR and SQRL, and use twice the best value found for LR in as
an initialization for the λ -schedule in RSPO. We also heavily tune λ for RP and RCPO. These values
are shown for each environment in the tables below.

Algorithm Name Hyperparameter Format
LR (γrisk,εrisk,λ )
RP λ

RCPO (γrisk,εrisk,λ )
MF Recovery (γrisk,εrisk)
MB Recovery (γrisk,εrisk,H)

LR RP RCPO MF Recovery MB Recovery
Navigation 1 (0.8,0.3,5000) 1000 (0.8,0.3,1000) (0.8,0,3) (0.8,0.3,5)
Navigation 2 (0.65,0.1,1000) 3000 (0.65,0.1,5000) (0.65,0,1) (0.65,0.1,5)

Maze (0.5,0.15,100) 50 (0.5,0.15,50) (0.5,0,15) (0.5,0.15,15)
Object Extraction (0.75,0.25,50) 50 (0.75,0.25,50) (0.75,0,25) (0.85,0.35,15)

Object Extraction (Dyn. Obstacle) (0.85,0.25,20) 25 (0.85,0.25,10) (0.85,0.35) (0.85,0.25,15)
Image Maze (0.65,0.1,10) 20 (0.65,0.1,20) (0.65,0,1) (0.6,0.05,10)

Image Reacher (0.55,0.05,1000) N/A N/A (0.55,0.05) N/A
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