
Batch Exploration with Examples for
Scalable Robotic Reinforcement Learning

Annie S. Chen∗, HyunJi Nam∗, Suraj Nair∗, Chelsea Finn
Stanford University

{asc8, hjnam, surajn}@stanford.edu
* equal contribution

1 Introduction
Learning from large and diverse datasets is a paradigm that has seen remarkable success in several
domains, from computer vision [1] to natural language [2, 3], with favorable properties like broad
generalization. While recent work [4, 5] has aimed to build such datasets for robotic manipulation,
acquiring large amounts of meaningful and useful robotic interaction remains a significant challenge.
On one hand, using humans to explicitly collect meaningful interaction, for example through teleop-
eration, is difficult to do at scale. On the other hand, while random exploration techniques can be run
at a much larger scale [4], they collect lower quality interaction with the environment due to the lack
of human supervision.

To address the above challenge, a number of prior works have explored the problem of task-agnostic
exploration [6, 7, 8, 9, 10, 11, 12, 13]. In this setting, agents still explore the world in an unsuper-
vised and scalable manner, but leverage some form of unsupervised intrinsic reward to encourage
meaningful interaction. While these approaches have been successful in video games and simulated
robotic control domains, they can struggle with the requirement of exploring everything in real,
high-dimensional scenes, such as those in vision-based robotic manipulation problems.

Our key insight is that by leveraging some weak human supervision, we can allow the agent to
focus on semantically relevant parts of the state space, greatly accelerating the collection of useful
data. Specifically, a human can communicate a prior over relevant states by providing a handful of
examples of “interesting” or “meaningful” states ahead of time, which a learning based agent can then
use to guide their exploration. Another advantage of such an exploration approach is that it seamlessly
integrates with recent progress in the fields of offline or “batch” reinforcement learning [14], where
an agent learns from an offline dataset of interaction. Together they provide a scalable approach to
robot learning, where first in the batch exploration phase, weak human supervision is used to collect
a large and diverse dataset of meaningful interaction, and second in the batch reinforcement learning
phase, policies can be learned from this data and used for downstream task execution.

Concretely, our main contribution is a batch exploration framework, Batch Exploration with Examples
(BEE), which leverages weak supervision to efficiently explore and can enable scalable collection
of robotic datasets. BEE starts with a handful of examples of relevant states provided by a human,
which only takes a few minutes to collect. BEE then learns to estimate whether a state is relevant
or not, and explores around states which it estimates are relevant. We observe that BEE is able to
explore effectively in challenging high-dimensional robotic environments, and unlike standard task
agnostic exploration techniques, is able to guide its exploration towards relevant states. Across a
range of simulated and real robot vision based manipulation tasks, BEE interacts more than twice as
often with relevant objects than prior state-of-the-art unsupervised and weakly supervised exploration
methods, and as a result collects higher quality data, enabling better downstream task performance.

2 The Batch Exploration + Batch RL Framework
We begin by describing the batch exploration + batch reinforcement learning framework, with the
goal of a scalable, data-driven approach to robotic learning, illustrated in Figure 1. First, in the
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Figure 1: The Batch Exploration + Batch RL Framework. First, a human provides weak supervision to the
agent to indicate what regions of the state space it should explore. Second, the agent explores around these
regions, collecting useful data. Third, offline RL is run on the collected data (either goal-directed or optionally
using offline reward labeling). Lastly, the learned policy is applied to downstream tasks. By minimizing the
need for a human in the loop, this framework enables scalably collecting and learning from robotic data.

batch exploration phase, a human provides some weak supervision to the agent which indicates what
regions of the state space it should explore. Second, also in the batch exploration phase, the agent
uses the supervision to guide its exploration to collect and store the relevant data without needing a
human in the loop. Third, in the batch reinforcement learning phase, the collected datasets can be
used with any model-based or model-free offline RL algorithm to learn a policy or model. This offline
RL phase either can use self-supervised RL techniques (e.g. goal-conditioned model-free RL [15] or
visual foresight [16, 17]) or can label the offline dataset with rewards and then use standard batch RL
algorithms [14, 18, 19, 20, 21, 22]. Lastly, the policy can then be applied to any downstream tasks
for which the initial guidance was relevant.

Batch Exploration. During the batch exploration phase, let the agent be exploring in a fixed horizon
controlled Markov process (CMP)M defined by the tupleM = (S,A, p, µ, T ), where S is the
state space, A is the action space, p(st+1|st, at) represents the stochastic environment dynamics,
µ(s0) represents the initial state distribution, and T denotes the episode horizon. Additionally, let
S∗ ⊂ S represent a subset of the state space which is relevant to explore. In the first stage of batch
exploration, a human provides some context information C to guide the agent towards exploring the
relevant states. While this context information can take many forms, in this work, we consider the
case where it is a set of K states [s̄1, ..., s̄K ] sampled uniformly from S∗.

In the second stage of batch exploration, the agent aims to learn an exploration policy at ∼ πexp(· |
st, C) conditioned on the human provided context to maximize an exploratory rewardRexp(st, C),
which gives high reward for visiting states in S∗, that is find πexp which maximizes the expected
exploratory reward. The exact reward function implementation will depend on the form of the context
C, which we discuss further in Section 3.

Batch Reinforcement Learning. Given the dataset D, collected by the agent, a number of down-
stream offline RL approaches can be applied, ranging from learning a goal-conditioned policy on the
collected data as is, or labeling the collected dataset D with a reward function offline and running
standard offline RL. As described in Section 4 we use a model based planning approach with either
goal images or an offline labeled reward function.

3 Batch Exploration with Examples (BEE)

While a number of works have studied the problem of batch RL [14, 18, 19, 20, 21, 22], fewer works
have studied the batch exploration phase of our framework, which we focus on here. Our proposed
approach, batch exploration with examples (BEE) receives weak supervision via examples of relevant
states, and subsequently aims to collect data around such relevant states. This latter step is difficult, as
it requires the algorithm to determine (a) whether a state (in our case an image) is relevant to explore,
and (b) how to select actions to reach these states. In this section we describe how the supervision is
provided, how BEE determines whether states are relevant, and how we can efficiently learn to reach
these relevant states via planning with a learned dynamics model.
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Figure 2: Interaction with Target Objects. Interaction with each target over learning. For each relevant
object, a sample human provided goal images is shown in the top left. We observe that given a single target
object, BEE interacts with the target object more than twice as often as baselines all domains (left) We also
observe that given two targets BEE is able to effectively explore them both (right).
Acquiring Human Supervision. The first step of BEE is collecting weak supervision to guide
exploration. In this work this supervision comes in the form of a handful of relevant states [s̄1, ..., s̄K ]
sampled uniformly from S∗. For example, if the relevant region of the state space involves interacting
with dishes, these relevant states would consist of images of the robot around and interacting with
dishes. On a real robot, these images can be collected in a matter of minutes by manually placing the
robot in a relevant configuration.

Exploring with BEE. Online exploration with BEE has two central components, which involve (a)
determining whether a state is relevant or not, and (b) selecting actions which will enable the agent to
reach and explore relevant states. To tackle (a) we leverage an ensemble of relevance discriminators,
and address (b) using a model-based planning approach, both of which we detail next.

Relevance Discriminator. To determine which states are relevant, BEE learns an ensemble of
L discriminators online which differentiate between the agent’s growing dataset D of collected
experience and the relevant states provided by the human. Given states s ∼ D as negatives and
human provided relevant states [s̄1, ..., s̄K ] ∼ S∗ as positives, BEE encodes each using a neural
network state encoder fenc, then trains each fully connected network φl as a binary classifier for
each element of the ensemble. We additionally leverage both the mix-up regularization and cropping,
details of which can be found in the supplement. Now that we’ve described how the discriminators
are trained, how do they translate to our exploratory reward Rexp? We would like to select action
sequences which explore around states which either the ensemble [φ1, .., φL] estimates are relevant,
or states for which the ensemble has high uncertainty. Therefore, rather than exploring under the
mean ensemble score, we use an optimistic estimate given by the maximum discriminator score over
the ensemble models: Rexp(s, C) = max[φ1(fenc(s)), ..., φL(fenc(s))], which captures both the
predicted relevance and the uncertainty.

Learned Dynamics and Planning. BEE learns a latent dynamics model pθ consisting of three compo-
nents, (1) an encoder fenc(zt|st; θenc) that encodes the state st into a latent distribution from which
zt is sampled, (2) a decoder fdec(st|zt; θdec) that reconstructs the observation, providing a reconstruc-
tion ŝt, and (3) a deterministic forward dynamics model in the latent space fdyn(ẑt+1|zt, at; θdyn)
which learns to predict the future latent state zt+1 from zt and action at. BEE then uses sampling
based planning, specifically the cross-entropy method (CEM)[23], in conjunction with the learned
latent dynamics model to plan sequences of actions to maximize the exploratory rewardRexp. Con-
cretely, it first encodes its current observation into a latent space zt using the learned encoder fenc.
On each iteration of CEM it then samples M action sequences of length H , which it feeds through
the latent dynamics model fdyn, resulting in predicted future states ẑt+1:t+H+1, which it selects to
maximizeRexp. Details of the latent MPC procedure can be found in the supplement.

4 Experiments
In our experiments we aim to assess how effectively BEE can explore relevant regions of the state
space compared to state-of-the-art approaches in task-agnostic and weakly supervised exploration,
testing on simulated and real robotic domains (See Figure 3). Concretely, we ask the following exper-
imental questions: 1) Does BEE yield improved interaction with relevant objects, while being robust
to irrelevant distractor objects? 2) Does using data collected from BEE lead to better downstream
task performance than using data collected via state-of-the-art task-agnostic and weakly supervised
exploration techniques? 3) How does BEE perform on hard exploration tasks on a real robotic
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system from images? We compare BEE to model disagreement based exploration (Disagreement)
[8, 13] , state-marginal matching (SMM) [12] which also uses the human provided weak supervi-
sion, and random exploration (Random). Implementation details can be found in the supplement.

Block Env Door Env Drawer Env Real Robot Desk Env

Figure 3: Experimental Domains. We consider 3 simulated do-
mains, interacting with blocks, a door, and a drawer. We also test
on a real Franka robot interacting with a desk.

Experiment 1: Does BEE Inter-
act More With Relevant Objects?:
We begin by measuring how much
BEE and the baselines interact with
relevant objects specified by the hu-
man, shown in Figure 2. We include
guided exploration (100 human pro-
vided images) toward each of the 3
small blocks, as well as to the door
under varying numbers of distractors, and to the drawer. We report the % of the last 100 episodes
in which the agent moved the target object more than a threshold every 100 episodes, with the first
100 episodes corresponding to random interaction. We observe that over all domains and targets
BEE interacts with the relevant object more than twice as often as the comparisons (Figure 2 (left)).
Furthermore, we observe that BEE can be used to guide exploration towards not just a single object,
but multiple objects, and find that BEE interacts with both more than the baselines (Figure 2 (right)).

Experiment 2: Does Data from BEE Enable Better Downstream Performance?: For down-
stream batch RL using the collected data, we consider the model-based self-supervised RL setting.
Specifically, we consider the visual foresight algorithm [16, 17], which learns a model of the dynam-
ics from an unlabeled batch of interaction data, then uses this model with planning to reach goals.

Open Push Push Push Push
Drawer Door (3) Door (5) Green Blue

BEE (Ours) 0.42 0.63 0.65 0.47 0.50
Disagreement 0.36 0.59 0.69 0.45 0.44

SMM 0.29 0.58 0.70 0.43 0.46
Random 0.31 0.60 0.65 0.45 0.45

Table 1: Downstream success rates using planning with col-
lected data. We compare the downstream task performance of
using the data generated by BEE for batch RL using the visual
foresight method. We observe that across 4 out of 5 tasks BEE is
the top performing method. All results are averaged over 1000 trials.

The model is trained on the full
dataset D collected in the batch explo-
ration phase to predict future states,
i.e. (st+1:t+H |st, at:t+H−1). For
downstream task planning, we use the
SV2P [24] model in conjunction with
sampling based planning (CEM), to
plan sequences of actions to reach a
goal image, under the planning cost
of `2 pixel distance. Further task and
planning details can be found in the
supplement. We consider five down-
stream planning tasks, (a) pulling the
drawer open, (b) pushing the door with 3 distractors, (c) pushing the door with 5 distractors, (d)
pushing the green block left, and (e) pushing the blue block right. We observe in Table 1 that across 4
out of 5 tasks, using the data collected by BEE improves performance over both prior methods and
random exploration

Experiment 3: Is BEE Effective on Hard Exploration Problems on a Real Robot?:

Figure 4: Performance on a Real Robot. On the desk
interaction task with a real Franka robot, we report the
percentage of episodes in which the agent interacts with
the target drawer (left, middle), as well as the success
rate over 20 trials in the downstream task of closing the
drawer (right).

Lastly, we test if BEE can tackle challenging
exploration problems on a real robot from pixel
inputs. To do so we consider the domain of a
Franka robot positioned over a desk, shown in
Figure 3. We provide weak supervision (50 hu-
man provided images) encouraging interaction
with the smaller of the two drawers, and mea-
sure the extent to which BEE interacts with the
target object compared to Disagreement. We
see in Table 1, that not only does BEE inter-
act with the drawer substantially more than Dis-
agreement, but that a dynamics model learned
on the collected data is far more effective for the
downstream task of closing the drawer. Addi-
tional experimental details can be found in the
supplement.
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A Training Details
Acquiring human supervision: For each comparison in each simulated domain, we supply 100
examples of relevant images. For the block domain, these examples involve the gripper hovering
over the target block at a random z position in a region of +/- 0.02 in the x and y directions from the
initial block position. For the door domain, the example images involve the gripper next to the door
handle with the door set to random angles either between -45 and -5 degrees or between 5 and 45
degrees. For the drawer domain, the example images involve the gripper near the drawer handle, with
the drawer open to random amounts between 0 and 0.14. For the robot domain, the example images
involve the small corner drawer of the desk opened and the robot arm moved to the handle. For each
comparisons in the robot domain, we only supply 50 examples of relevant images.

Planning during online data collection (MPC): For all simulation domains, we report results
averaged over 5 different random seeds for each method. For each run, we collect a dataset of 2,000
episodes, each of 50 time steps. During online planning, all methods use a single iteration of the
cross entropy method to plan a sequence of actions. For each 50-step episode, we replan every 10
steps, i.e. we plan five 10-step trajectories. In simulation, each episode is reset to a fixed initial state.
For the real robot domain, we run one random seed for 1000 episodes, each of 100 time steps, also
replanning every 10 steps. At each stage of planning, we sample 1000 10-step action sequences and
sort according to the method used. The agent uniformly randomly chooses one of the top 5 ranked
trajectories to execute. With probability 0.1, the agent takes a random action in place of a chosen one
from the selected trajectory.

Model training: All models for BEE, Disagreement, and SMM are trained with a learning rate of
1e-3. The main VAE (fenc, fdec) for all methods uses a beta of 1e-3, and the separate VAEs for
SMM use beta 0.5, which was the default value used in the codebase of the original paper. After each
new episode is collected, it is added as a sample of size [50, 3, 64, 64] into the replay buffer. The
encoder/decoder fenc and fdec as well as the dynamics model (all 5 in the case of Disagreement) are
updated 20 times after each new episode. For SMM, both VAEs are also updated 20 times after each
epoch. All models are trained using separate Adam optimizers and using random batches of size 32
length H samples starting from any time step of the most recent 500 episodes, where H is the current
training horizon for the dynamics model(s).

For training the dynamics model(s), for the first 50 episodes, we use a training horizon of 2; for
the next 100 episodes, we use horizon 4; for the 150 episodes after that, we use horizon 8; and for
all remaining episodes we use horizon 10. For all comparisons, the encoder/decoder fenc and fdec
are updated for each of the 20 times with 1 batch from observations in the replay buffer that were
collected online as well as 1 batch from the provided example images. Cropping regularization is
applied to these input batches by expanding the boundaries by 4 pixels each and then choosing a
random 64× 64 crop of this larger image. For all simulated experiments, balanced batches of both
human-provided example images and observations from the replay buffer are used to train the main
VAE. Hence, all methods in simulation leverage the same human-provided weak supervision. In the
robot domain (for all methods), the VAE is not trained with balanced batches of the human provided
images, as there are only a small number (50) such states.

For BEE, the relevance discriminators are each updated once at the end of the episode. To pre-
vent overfitting, the discriminators are trained with mixup and input image cropping. For mixup
regularization, hyperparameter α = 1 is used to control the extent of mixup.

B Experimental Details
For the block, door, and drawer domains, we use a Mujoco simulation built off the Meta-World
environments [25]. For the robot domain, we consider a real Franka robot operating over a desk,
which has two drawers as well as a cabinet and multiple objects on top. The state space is the space
of RGB image observations with size [64, 64, 3]. For the simulation env, we use a continuous action
space over the linear and angular velocity of the robot’s gripper and a discrete action space over the
gripper open/close action, for a total of five dimensions.

Interaction with Target: For the block and door evaluation of the online data collection, interaction
is defined as moving the target block or door at least a distance of 0.05 any time during the episode.
For the drawer domain, interaction is defined as pulling the drawer open by at least 0.03 any time
during the episode. The drawer begins slightly open (by 0.05 distance). Lastly, for the real robot
domain, we define two criteria for interaction: (1) touching the handle of the desk’s corner drawer

8



and (2) actually moving the drawer open or closed. We do not reset the drawer position between
episodes, so if an episode ends with the drawer open, the next episode will start with it open.

Downstream Planning: For all control experiments, evaluation is done by using model predictive
control with SV2P models trained on the full datasets collected from each of five seeds in the batch
exploration phase (a total of 10k episodes) along with 5k random episodes for 100k iterations. For
evaluating control on the real robot, for each method we train the SV2P model on the 1000 episodes
collected in the batch exploration phase and no random data. We plan 10 actions and execute them in
the environment five times for a 100 step trial. Each stage of planning uses the cross entropy method
with two iterations, sampling 200 10-step action sequences, sorting them by the mean pixel distance
between the goal and the predicted last state of each trajectory, refitting to the top 40, and selecting
the lowest cost trajectory.

SV2P Training: SV2P learns an action-conditioned video prediction model by sampling a latent
variable and subsequently generating an image prediction with that sample. The architecture and
losses used here are identical to the original SV2P paper [24]. This architecture is shown in Figure 5,
which is taken from the original paper. The models are trained to predict the next fifteen frames given
an input of five frames. All other hyperparameters used for training are default values used in the
codebase of the original paper.

Figure 5: SV2P architecture. SV2P estimates the posterior latent distribution p(z | x0:T ) by learning an
inference network (top) qφ(z | x0:T ) = N (µ(x0:T ), σ(x0:T )). Latent values are sampled from qφ(z | x0:T ),
and the generative network (bottom) takes in the previous frames, latent values, and actions to predict the next
frames. Figure taken from the original paper [24].

Downstream Task Evaluation: In the Open Drawer task, the goal image involves the gripper above
the drawer handle, which is open to 0.15 distance. Success is defined by opening the drawer at least
0.03. In the Blue Block task, the goal image involves the gripper over the initial blue block position
and the blue block moved 0.1 to the right. Success is defined as pushing the block more than 0.05 to
the right. In the Green Block task, the goal image involves the gripper over the initial green block
position and the green block moved 0.1 to the left and 0.04 downwards. Success is defined as pushing
the block more than 0.05 to the left. In the Door task with five distractors, the goal image involves
the gripper above the handle and the door opened to 0.35 radians. Success is defined by opening the
door to at least 0.15 radians, measured at the end of each 50-step episode. For the robot downstream
task, we labeled the data collected by BEE and Disagreement and trained a reward classifier on 100
examples (labeled as 1) of the drawer open and 200 examples of the drawer closed (labeled as 0),
with the gripper sometimes but not always near the drawer. We then conducted planning using this
same classifier as the cost for both methods. Success is defined as pushing the drawer closed.

C Architecture Details

In this section, we go over implementation details for our method as well as our comparisons.
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During data collection, for each domain (block, door, and drawer domains in simulation as well as the
real robot domain), all comparisons are trained on an Nvidia 2080 RTX, and all input observations
are [64, 64, 3]. Each domain leverages an identical architecture, which is described as follows.

All comparisons use an encoder fenc with convolutional layers (channels, kernel size, stride): [(32, 4,
2), (32, 3, 1), (64, 4, 2), (64, 3, 1), (128, 4, 2), (128, 3, 1), (256, 4, 2), (256, 3, 1)] followed by fully
connected layers of size [512, 2×L] where L is the size of the latent space (mean and variance). We
use a latent space size of 256. All layers except the final are followed by ReLU activation.

The decoder fdec takes a sample from the latent space of size L and feeds it through fully connected
layers [128, 128, 128], followed by de-convolutional layers (channels, kernel size, stride): [(128, 5,
2), (64, 5, 2), (32, 6, 2), (3, 6, 2)]. All layers are followed by ReLU activation except the final layer,
which is followed by a Sigmoid.

The dynamics model fdyn is an LSTM layer [128] followed by a fully connected network with layers
[128, 128, 128, L], which are all followed by ReLU activation except the final layer. For all domains,
BEE and SMM learn just one dynamics model while Disagreement learns five of these.

For BEE, we learn an ensemble of three relevance discriminators. These take a sample from the
latent space of size L and feed it through fully connected layers [128, 64, 64, 1]. We apply spectral
normalization after each layer followed by a ReLU activation (except the final layer, which is followed
by a Sigmoid instead).

For SMM, we learn two separate VAEs: one to represent the density over the policy’s visited states
while the other fits a density model to the human provided relevant states. These two VAEs have the
same architecture: they both use an encoder genc that takes in a sample from the latent space of size
L and feeds it through fully connected layers [150, 150], which are followed by ReLU activations.
This is followed by a fully connected layer [L2] for the mean and variance each, where L2 is the size
of the latent space. We use L2 = 100. The decoder gdec takes in a sample from the latent space of
size L2 and feeds it through fully connected layers [150, 150, L], where all layers except the last are
followed by a ReLU activation.

D Related Work
Learning from diverse offline datasets has shown promise as a technique for learning robot policies
that can generalize to unseen tasks, objects, and domains [16, 26, 27, 17, 28, 4, 29, 30]. However
collecting such large and diverse datasets in robotics remains an open, and challenging problem.

A vast number of prior works have collected datasets for robotic learning under a range of problem
settings and supervision schemes. One class of approaches uses humans in the loop and collects
datasets of task demonstrations via teleoperation [5, 29] or kinesthetic teaching [31, 32]. While
these methods can produce useful data, they are difficult to perform at scale, across diverse tasks
and environments. Alternatively, many other works have explored collecting large robotic datasets
without humans in the loop for tasks like object re-positioning [16, 17, 4], pushing [33, 34] and
grasping [26, 35, 36]. While these present a scalable approach to data collection, the unsupervised
nature of the exploration policy results in only a small portion of the data containing meaningful
interactions. While heuristics and scripted policies like those employed in grasping can enable more
meaningful interactions, designing them for a broad range of tasks can require significant engineering
effort.

One way to maintain the scalability of random exploration, but acquire more relevant interaction, is to
have an agent learn to explore under an intrinsic reward signal, which is task-agnostic but encourages
more meaningful interaction. These intrinsic rewards come in many forms, including approaches that
optimize for visiting novel states [6, 37, 7, 9, 38], the learning progress of the agent [39, 40], model
uncertainty [41, 42, 8, 10, 13], information gain [42], auxiliary tasks [43], generating and reaching
goals [11, 44], and state distribution matching [12]. Additionally, a number of these approaches
[43, 11, 44, 45] have been demonstrated on real robotics problems. However all of these methods
struggle with the issue of having to explore everything about a potentially vast state space when only
some portion of it is relevant. We aim to mitigate this challenge by introducing mild supervision into
the exploration problem, which we observe empirically yields much more useful exploration than
task-agnostic strategies.

A seemingly obvious approach to incorporating supervision into the exploration problem is to include
a task-specific extrinsic reward function which is then combined with the exploration objective. In
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fact most applications of intrinsic motivation in RL do exactly this, and treat the intrinsic reward as
an additional reward bonus. Other works also leverage more complex approaches to combining value
functions and exploration [46, 47, 48]. Unlike these works, we aim to not rely on any supervision
in the loop of RL, as is needed when providing a reward function online. Like this work, some
prior works have explored how out of the loop weak supervision can be leveraged to acquire better
exploratory behavior, ranging from demonstrations [49], binary labels about state factors of variation
[50], and semantic object labels [51] to accelerate exploration. Unlike these approaches, our proposed
supervision can be collected in a matter of minutes and leads to efficient exploration in real visual
scenes of robot manipulation.

Our method draws inspiration from prior work on reward learning [52, 53] and adversarial imitation
learning [54]. These approaches aim to tackle the task-specification problem, and learn a discriminator
over human provided goal state images or demonstrations, which is used to acquire a reward function.
In contrast, our work focuses on how to incorporate scalable sources of supervision into robotic
exploration and data collection. We show that an ensemble of such classifiers can be used to guide
exploration, and this data can easily be used with any offline reinforcement learning algorithm. By
considering the two stage batch exploration + batch reinforcement learning approach, our work
depends far less on the accuracy of the specific classifiers used during data collection, and can
potentially learn multiple downstream tasks from a single dataset.

11


	Introduction
	The Batch Exploration + Batch RL Framework
	Batch Exploration with Examples (BEE)
	Experiments
	Training Details
	Experimental Details
	Architecture Details
	Related Work

