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Abstract

To safely deploy learning-based systems in highly uncertain environments, one
must ensure that they will always satisfy constraints. This work proposes SEELS:
a model-based meta-reinforcement learning framework to tackle this problem.
By opting for a Bayesian meta-learning model with linear uncertainty, we derive
confidence sets for the parameters which hold at all times with high probability.
We then propose an algorithm consisting of distinct exploration and exploitation
phases, to tackle problems with high dynamics uncertainty, for which reaching a
goal safely is initially unfeasible. By leveraging a new uncertainty propagation
technique rooted in random set theory, and by deriving a new regularizer for our
Bayesian model, our approach scales to higher dimensional systems than previous
work. Under reasonable assumptions, we prove that our framework provides strong
probabilistic safety guarantees in the form of a single joint chance constraint.

Figure 1: Initially, uncertainty is too high to safely reach the goal, Instead, we plan safe information-gathering
trajectories to infer the dynamics and reduce uncertainty. Once planning to Xgoal is feasible, the robot can safely
reach the goal while satisfying all constraints with high probability.
Color legend: true trajectory, reachable sets for exploration (6), reachable sets for exploitation.

1 Introduction

Deployment of truly autonomous robotic systems in changing and unpredictable environments
requires agents that are capable of learning during operation and safely adapting to new environments.
Reinforcement learning (RL) can be an effective approach to controlling uncertain systems (Hwangbo
et al., 2019), and model-based methods in particular enable an agent to consider its uncertainty
over dynamics when choosing actions (Deisenroth et al., 2015). However, standard model-based
reinforcement learning (MBRL) methods do not provide guarantees on maintaining safety during
operation. Existing work on safety in MBRL has developed algorithms with strong theoretical
guarantees, but has either been limited to linear systems (Dean et al., 2019), or utilized kernel-based
dynamics models which struggle to scale with state dimension, and uncertainty propagation schemes
that can be too conservative or too slow for practical use (Koller et al., 2018; Lew and Pavone, 2020).

We tackle this problem by leveraging Bayesian meta-learning and sampling-based reachability
analysis to develop a framework for nonlinear MBRL that is practically useful and probabilistically
safe. To handle high levels of initial uncertainty, our approach decouples online learning to reducing
dynamics uncertainty (the exploration phase) and executing the desired task (the exploitation phase).
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2 Problem Formulation: Safe Navigation to a Goal

The goal of this work is to enable robots to safely navigate from an initial state x(0) to a goal region
Xgoal despite highly uncertain dynamics, while minimizing a chosen cost l(·) (e.g., fuel consumption).
We denote the state of the agent as xk ∈ Rn, and uk ∈ Rm denotes the control inputs. The system
follows dynamics xk+1 = h(xk,uk)+g(xk,uk,θ)+εk, where h(·) is known, g is unknown, θ are
parameters, and εk are stochastic (bounded sub-Gaussian) disturbances. We assume the (unobserved)
parameters are sampled θj ∼ p(θ) at the beginning of each episode j, and fixed throughout its
duration. They correspond to uncertain properties of the system, e.g. the inertia of a payload.

Critically, this algorithm should guarantee safety at all times by respecting system constraints
(xk ∈Xfree, uk ∈U , where Xfree,U are feasible state and control spaces). Due to the stochasticity
of the system and the uncertain dynamics, strictly enforcing all constraints for all times may be
challenging without further assumptions, e.g., bounded model mismatch. Instead, we enforce all
constraints with a single joint chance constraint at probability level (1− δ)∈ (0, 1). The problem is

min
x,u

E
( N∑
k=0

l(xk,uk)

)
, xk+1 = h(xk,uk) + g(xk,uk,θ) + εk, x0 = x(0), (1a)

P
( N∧
k=1

(
xk ∈ Xfree

)
∩

N−1∧
k=0

(
uk ∈ U

)
∩
(
xN ∈ Xgoal

))
≥ (1− δ), (1b)

where N is the total duration of the problem (possibly infinite). Satisfying safety constraints with
unknown dynamics at all times is extremely difficult without further information (Koller et al., 2018):

Assumption 1 (A1). x(0) ∈ X0 ⊂ Xfree, where X0 is a control invariant set and we have a feedback
controller π(·) : X0 → U under which it is possible to remain in X0 for all θ and ε.

This assumption reflects that the system is initially stable and satisfies all constraints under a nominal
controller (e.g., regulated to a stable linearization point using a simple feedback law such as LQR).

Further, we assume that we have access to a dataset of plausible trajectories generated from sampled
parameters θj . Such information may come from, for example, previous operation of a robot in
similar environments, or data generated from simulations with different parameters. This motivates
our use of meta-learning to encode this information and characterize the uncertainty over dynamics.

3 Bayesian Meta-Learning and Adaptation Guarantees

Bayesian Meta-Learning: Our approach leverages a model for the unknown portion of system
dynamics g. To this end, we employ the architecture presented in (Harrison et al., 2018a,b), which
the authors refer to as ALPaCA. It models the unknown dynamics as ĝ(x,u) = Kφ(x,u), where
φ is a feed-forward neural network, andK is an uncertain matrix. This linear structure allows for
efficient online updates whose behavior is well understood. Given transitions {(x0,u0,x1), . . . ,
(xt,ut,xt+1)}, we update the parameters of each i-th row ofK using linear regression as

Λi,t = ΦTt−1Φt−1 + Λi,0, k̄i,t = Λ−1i,t (ΦTt−1Gi,t + Λi,0k̄i,0), i= 1, . . ., n, (2)

whereGT
t = [x1−h(x0,u0), . . .,xt−h(xt−1,ut−1)], and ΦTt−1= [φ(x0,u0), . . .,φ(xt−1,ut−1)].

Offline, this model is meta-trained on a dataset of trajectories corresponding to different system
dynamics sampled from the distribution over possible systems. By backpropagating the posterior
predictive distribution to learn φ and the prior parameters (k̄i,0,Λi,0), this model translates a dataset
of uncertain trajectories into a learned feature space and a calibrated uncertainty characterization.

Online, only the last layerK is adapted, which enables the derivation of strong safety guarantees.

Probabilistic Adaptation Guarantees Our first contribution consists of providing strong proba-
bilistic adaptation guarantees for this model in the form of uniformly calibrated confidence sets:
Theorem 1. Consider the true system (1a), with σε-subgaussian bounded noise, modeled using the
meta-learning model ĝ(x,u) = Kφ(x,u), which is sequentially updated with online data from
(1a) using (2), leading to the updated parameters (k̄i,t,Λi,t) for each dimension i=1, . . ., n. Let
δi ∈ (0, 1) a confidence threshold. Assume that the following conditions hold:
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For all θ, there exists k∗i such that k∗iφ(x,u) = gi(x,u,θ) ∀x ∈ X ,u ∈ U , i= 1, . . ., n. (A2)

For θ∼ p(θ), and any i= 1, . . ., n, P
(
‖k∗i − k̄i,0‖2Λi,0

≤ σ2
εiχ

2
d(1− δi)

)
≥ (1− δi). (A3)

Let
βi(Λi,t, δi) = σεi

(√
2 log

(
1

δi

det(Λi,t)1/2

det(Λi,0)1/2

)
+

√
λmax(Λi,0)

λmin(Λi,t)
χ2
d(1−δi)

)
, (3)

and Cδi,t(k̄i,t,Λi,t) = {ki |
∥∥ki−k̄i,t∥∥Λi,t

≤βi(Λi,t, δi)}. (4)

Then, P
(
k∗i ∈ Cδi,t(k̄i,t,Λi,t) ∀t≥ 0

)
≥ (1− 2δi). (5)

This result relies on two key assumptions on the quality of the offline meta-learning process: A2 states
that the meta-learning model is capable of fitting the true dynamics, and A3 that the prior uncertainty
characterization is conservative. If the dataset has adequate coverage of the state and action spaces
and the dynamics distribution p(θ), the offline meta-learning procedure proposed in (Harrison et al.,
2018a) can approach satisfaction of these assumptions, which we discuss in detail in the Appendix.

Derived using results from the literature on linear contextual bandits (Abbasi-Yadkori et al., 2011),
Theorem 1 provides confidence set over model parameters which hold uniformly over all future times.
This is critical to ensure satisfaction of (1b), despite an unknown final time N . This scaling factor βi
is closely related to that used for kernel Gaussian Processes, for which the value of βi is often too
large for practical use and set to a lower value for experiments (Berkenkamp et al., 2017). In contrast,
we directly use this theoretical bound in our framework, and can regularize properties that influence
βi during offline meta-learning to obtain better performance without compromising safety.

4 Sequential Exploration and Exploitation for Learning Safely (SEELS)

In order to ensure overall safety, i.e. by satisfying (1b) until Xgoal is reached, we require confidence
tubes over trajectories. Indeed, enforcing a chance constraint at each timestep, as in (Hewing et al.,
2018; Polymenakos et al., 2020; Lew et al., 2020; Khojasteh et al., 2020; Cheng et al., 2020), does
not guarantee safety of the whole trajectory. We construct these tubes using the confidence sets from
Theorem 1: given the control inputs u= (u0, . . .,uN−1)1, we define the sequence of reachable sets

X t,δk (u) =

{
xk=f(·,uk−1,K, εk−1) ◦ . . . ◦ f(x0,u0,K, ε0)

∣∣∣∣ x0=x(t), ki∈Cδi,t, εij∈Ei,
j=1, . . ., k−1, i=1, . . ., n

}
, (6)

where k= 1, . . ., N , and f(x,u,K, ε) =h(x,u) +Kφ(x,u) + ε. The construction of these con-
fidence sets enables one to consider xk ∈ X t,δk only, and relax the generally intractable chance-
constrained stochastic problem in (1). We follow this approach and transcribe (CC-OCP) into a
deterministic problem that can be efficiently solved by a general purpose non-convex solver:

min
µ,u

N∑
k=0

l(µk,uk), s.t.
N∧
k=1

X t,δk ⊂Xfree,

N−1∧
k=0

uk ∈U , X t,δN ⊂Xf, X t,δ0 = {x(t)}, (7)

where µ= (µ0, . . .,µN ) are the centers of the reachable sets {X t,δk }Nk=1, see (Lew and Pavone, 2020).

SEELS: Due to high dynamics uncertainty, tight control constraints, and long planning horizons,
(7) may be infeasible. This motivates a safe learning-based exploration-exploitation framework to
sequentially reduce uncertainty, and eventually reach Xgoal. Our approach is based on a repeated
two-phase approach: when (7) is feasible with Xf =Xgoal, we enter the exploitation phase, and plan
a safe trajectory to Xgoal with the current model uncertainty. In the exploration phase, we instead
strictly perform safe exploration, planning an information-gathering trajectory that returns with high
probability to the initial safe invariant set X0. This split yields a tractable sequence of trajectory
optimization problems, although it induces sub-optimality relative to the computationally intractable
problem of simultaneously trading off exploration and exploitation (Bar-Shalom and Tse, 1974). Our
information cost is derived from the mutual information between the unknown dynamics and the

1Accounting for a nominal feedback controller can be used to reduce the size of this tube and is a simple
extension. In this work, we omit feedback to better demonstrate the adaptation capabilities of the meta-training
model, the tightness of the confidence sets, and to better verify safety claims of the framework.
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observations, leveraging the current predictive uncertainty of the model. Notably, its computational
complexity does not scale with the amount of data, as is the case for similar objectives for kernel
Gaussian processes (Koller et al., 2018; Williams and Rasmussen, 2006). SEELS guarantees that the
agent is always able to find feasible trajectories and ensure safety at all times with high probability:
Theorem 2. Under assumption A1-3, apply SEELS to sequentially explore. Then, there exists an
horizon N ensuring the feasibility of each exploration phase at all times2 with probability (1− δ).

Further, assuming that the exploitation problem is feasible at some time3, the system is guaranteed to
satisfy (1b), i.e., to be safe at all times and eventually reach Xgoal with probability (1− δ).

Practical considerations: Implementation of SEELS is complicated by challenges in reachability
analysis and nonconvex optimization. First, evaluating (6) over multiple timesteps is difficult due
to the nonconvexity of φ. Further, the updates to the parameters ki preclude exact offline methods
(Bansal et al., 2017; Fan et al., 2020), and methods using Lipschitz continuity to conservatively
propagate these sets (Koller et al., 2018) are too conservative in practice. In this work, we leverage
randUP, a recently derived sampling-based uncertainty propagation scheme for approximate reacha-
bility analysis (Lew and Pavone, 2020). We follow this method to formulate (7). This nonconvex
optimization problem is then solved through sequential convex programming, which entails solving a
sequence of convex reformulations. As the feasibility of (7) depends on the planning horizon N , we
also perform a search over a predefined range of values. Further details are provided in the Appendix.

Results: We verify our proposed approach on a nonlinear six-dimensional planar free-flyer robot
with tight control constraints navigating in a cluttered environment. The goal consists of safely
transporting an uncertain payload, which causes a change in mass and inertial properties (including
the location of the center of mass), to a goal region.

We validate the safety and reliability of our framework on a batch of 250 problems with randomized
dynamics, obstacle configurations, and initial and final conditions. We compare the sensitivity to the
noise magnitude, to the number of samples for reachability analysis, to δ, and to the regularization of
βi. Figure 1 shows illustrative experiments. Results in Figure 2 show that SEELS reliably solves this
problem for multiple obstacle fields. In particular, (1b) is conservatively satisfied in practice, and
the system reaches the goal safely after a few exploration phases. In comparison, a naive approach
which only considers uncertainty in εk deems reaching Xgoal directly to be safe, and violates safety
constraints 80% of the time. This demonstrates the need for sequential online learning to reliably
solve this problem. Further, we observe that increasing M does lead to increased success rate and
probability of safety. Therefore, by Theorem 2, success is guaranteed as long as the number of
samples for reachability analysis M is high enough. Moreover, the conservatism of the algorithm can
be tuned by choosing a different value for δ: by opting for lower probability of safety, Xgoal is reached
faster in average. Finally, regularizing βi reduces conservatism, while still guaranteeing probabilistic
safety in practice. This correlates both with less conservatism, and faster time to reach Xgoal.

Figure 2: Results for 250 randomized experiments. On plots showing success percentages (all constraints are
satisfied and xN∈Xgoal), the green region denotes results with a success percentage at or above the desired
success probability (1−δ) (and vice versa for the red region). Error bars correspond to 95% confidence intervals.

Conclusion: SEELS provides a principled MBRL framework to reliably learn and perform tasks
while guaranteeing safety at all times with high probability. Our combination of meta-learning with
assumptions A2-3 motivates two directions of future work: safety analysis with feature mismatch,
and finite sample guarantees for reachability analysis of uncertain meta-learning models.

2This is in contrast to related work on model predictive control which provides probabilistic feasibility over a
finite horizon (Ono, 2012). The key consists of exploiting confidence sets which hold jointly for all times.

3Assuming that the original problem is feasible with perfect dynamics knowledge, this condition holds if
the objective used for exploration leads to actions that continually reduce uncertainty, related to conditions on
observability and persistence of excitation (Berberich et al., 2020; Coulson et al., 2018; Mania et al., 2020).
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A Algorithm, β-Regularization, and Information Objective

A.1 SEELS: Full Algorithm, and Exploration-Exploitation Problems

SEELS is a two-phase approach: when the problem is feasible, we enter the exploitation phase; when
the problem is infeasible, we instead enter the exploration phase. In the exploitation phase, we solve
the trajectory optimization problem with the current model uncertainty. In the exploration phase, we
instead strictly perform safe exploration, planning an information-gathering trajectory that returns
with high probability to the safe invariant set. This split yields a tractable sequence of trajectory
optimization problems. Concretely, we write the problems associated with each phase as:

(Explore-OCP)

min
µ,u

N∑
k=0

linfo(µk,uk) s.t. X t,δN ⊂X0,

N∧
k=0

(
X t,δk ⊂Xfree
∩ uk ∈U

)
, X t,δ0 = {x(t)},

(Reach-OCP)

min
µ,u

N∑
k=0

lreach(µk,uk) s.t. X t,δN ⊂Xgoal,

N∧
k=0

(
X t,δk ⊂Xfree
∩ uk ∈U

)
, X t,δ0 = {x(t)},

where {X t,δk }Nk=1 satisfy (6), and are computed using the confidence sets (4). (Reach-OCP) uses the
cost function associated with the task, and Xgoal as the desired goal set. (Explore-OCP) is similar,
but instead uses X0 as the goal set, thus ensuring the system will be safe for the next phase, and uses
an information gathering cost linfo to encourage visiting states which reduce remaining uncertainty
in the dynamics. In this work, we derive linfo from the mutual information between the unknown
dynamics and the observations, leveraging the current predictive uncertainty of the model. The
specific formula and derivation for our meta-learning model are provided in A.3. Notably, this loss
does not suffer from computational complexity that scales with the amount of data, as is the case for
similar objectives derived for kernel Gaussian processes (Koller et al., 2018; Williams and Rasmussen,
2006; Srinivas et al., 2010).

Our approach SEELS, summarized in Algorithm 1, consists of sequentially learning a model of
the dynamics by solving (Explore-OCP), before reaching Xgoal whenever (Reach-OCP) admits a
feasible solution. Due to uncertainty, the feasibility of each problem depends on the optimization
horizon N . For this reason, we perform a search over a predefined range of planning horizons. For
exploitation, we select the first feasible solution if one exists, although other criteria could be used,
e.g., minimal control cost. For exploration, we select the trajectory which leads to the largest expected
information gain. Indeed, due to tight control constraints and safety constraints, a larger horizon does
not necessarily lead to higher information gain. This heuristic works well in practice, and future
work will consist of adopting a continuous time problem formulation with free final time, which is an
active field of research.

Figure 3: To guarantee safety at all times and reach a goal region Xgoal despite uncertain dynamics f(·, ·,θi),
our framework consists of an offline phase, where a dataset over multiple models is used to meta-train an
uncertain Bayesian meta-learning model of the system. Then, it is deployed and the system safely adapts the
last layer K of the model. Using SEELS, the agent autonomously explores the environment to decrease its
uncertainty, and safely reaches Xgoal with high probability.
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We leverage a sampling-based reachability analysis approach to compute approximations of the
reachable sets (6), which the authors refer to as randUP (Lew and Pavone, 2020). By sampling
parameters (ki, εk) within their confidence sets and bounds, evaluating the resulting reachable states
x for these parameters, and taking their convex hull to approximate the reachable sets in (6), it
provides a scalable approach to efficiently compute these tubes with no assumptions on the system
apart from differentiability. Although this method lacks finite time guarantees of conservatism,
asymptotic guarantees can be derived using random set theory, and finite-time approximations are
generally sufficient to ensure empirical safety, as demonstrated in the results. (Explore-OCP) and
(Reach-OCP) are nonconvex optimal control problems which we solve through a direct method
based on sequential convex programming (SCP). In this work, we always initialize SCP with an
infeasible straight-line trajectory.

A.2 Regularizing Meta-training for Safe Online Learning

The size of the confidence sets for the model parameters ki is controlled by the term βi, which
depends on the structure of the problem. Specifically, by relying on the expressiveness of the meta-
learned features φ(·, ·), parameterized by a feed-forward neural network, different set of weights
for φ and prior parameters (k̄i,0,Λi,0) could be used to parameterize the unknown dynamics, while
satisfying Assumptions 2 and 3. Therefore, it is possible to modify the meta-training procedure to
obtain a model with lower values of βi, and improve performance without compromising safety.

Specifically, we note from (3) that the value of βi depends on the ratio between the maximum and min-
imum eigenvalues of the prior and posterior precision matrices Λi. If λmax(Λi,0) ≤ 1 as is typically
the case in our experiments, then it holds that λmax(Λi,0)/λmin(Λi,t) = λmax(Λ−1i,t )/λmin(Λ−1i,0 ) ≤
λmax(Λ−1i,t )λmin(Λ−1i,0 ) ≤ λmax(Λ−1i,t )λmax(Λ−1i,0 ). Furthermore, λmax(Λ) ≤

√
Tr(ΛTΛ). Com-

bining with the above, we propose to regularize an upper bound of the ratio λmax(Λi,0)/λmin(Λi,t)
during offline meta-training:

Lreg(Λi,0) = αreg

n∑
i=1

Tr(Λ−Ti,t Λ−1i,t )Tr(Λ−Ti,0 Λ−1i,0 ) (10)

where the scalar αreg controls the strength of this regularization, and is selected using a validation
dataset. As the meta-training model is directly parameterized by the inverse of the precision matrices
Λi (Harrison et al., 2018b), this regularizer can easily be added to the standard training loss.

From (3), we observe that βi also depends on the ratio of determinants of the prior and posterior
precision matrices

(
det(Λi,t)/det(Λi,0)

)
. Although a convex regularizer for this term can be

derived, we found that including it did not lead to performance improvements. This ratio can be
interpreted as capturing the amount of information that the model has gathered online, which is
independent of the structure of the prior model. Before learning, this ratio is 1, so the other term

Algorithm 1 Sequential Exploration and Exploitation for
Learning Safely (SEELS)

Input: Meta-training model satisfying A.2 and A.3

1: while x0 /∈ Xgoal do
2: for Ni ∈ {N reach, . . . , N reach} do . Try reaching
3: (µ,u)← Solve (Reach-OCP)
4: if (Reach-OCP) feasible then
5: Apply u0:N−1 to true system . Reach
6: Break
7: for Ni ∈ {1, . . . , Ninfo} do . Explore
8: (µi,ui)← Solve (Explore-OCP)
9: if (Explore-OCP) feasible then

10: Compute liinfo(µi,ui)

11: ibest ← arg maxi l
i
info(µi,ui) . Get best N

12: Apply uibest to true system
13: Update (k,Λ) with {(xk,uk,xk+1)}N−1k=0
14: x0 ← xN

Figure 4: Rollouts on the system consid-
ered in experiments: Left: Due to high un-
certainty, attempting to reach Xgoal is ini-
tially unsafe, violating velocity and final con-
straints. Right: Using SEELS, the system
safely reaches the goal after safely learning
its dynamics.
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composed of the ratio of eigenvalues dominates βi. We observed that it is during these early stages
that the meta-training model and its bounds βi are most conservative, which could explain the
importance of the regularizer in (10), whereas regularizing the ratio of determinants appears to make
little difference.

A.3 Information cost

During the exploration phase, we perform trajectory optimization with an objective function that
encourages visiting states and taking actions that reduce uncertainty over the unknown dynamics. To
do so, a natural objective function to maximize is the mutual information between the unknown func-
tion g(·, ·,θ) and the observations x̃+ =xt−h(xt−1,ut−1). This cost characterizes the information
gain (MacKay, 1992; Srinivas et al., 2010; Chowdhury, 2017) from observing x̃+.

We derive this objective for the linear-Gaussian Bayesian model assumed by the meta-learning
formulation in (Harrison et al., 2018a). For this formulation, which assumes that observations are
corrupted with Gaussian noise, the mutual information can be computed in closed form. While in this
work we assume bounded (non-Gaussian) noise corrupting our measurements, we find that making
this approximation works well in practice to encourage exploration.

Let the posterior distribution over models be specified by ki ∼ N (k̄i, σ
2
εiΛi), with Gaussian-

distributed observation noise εi of variance σ2
εi . In this setting, the marginal distribution over

observations x+
i =kiφ(x,u) + εi given an arbitrary state x and control input u is also normally

distributed as N (kiφ, (1 + φTΛ−1i φ)σ2
εi), where φ=φ(x,u).

Next, we define the mutual information I between the observation x+, and the true model g(·, ·,θ),
as a function of the current state x and control input u, and assuming that Assumption 2 holds. This
quantity denotes the information gain from applying the control input u to the true system from
x, and observing x+ to update our model. The mutual information is defined using the entropy
H(·), which for a Gaussian-distributed random variable x+ ∼ N (µ,Σ) evaluates to H(x) =
(1/2)log(det(2πeΣ)). Hence, the information gain from observing the scalar random variable x+

i

can be expressed as I(x+
i ; gθ) = H(x+

i ) − H(x+
i |gθ) = 1

2 (log(var(x+
i )) − log(var(x+

i |gθ)) =
1
2 (log((1 + φTΛ−1i φ)σ2

εi))− log(σ2
εi))) = 1

2 (log(1 + φTΛ−1i φ)).

For our problem formulation, this quantity approximately expresses the information gain from
observing each dimension i of the state (which are modeled independently in our formulation).
Intuitively, we would like to design exploration trajectories that visit states and take actions where this
quantity is high for all dimensions of the state, as these observations would be the most informative
in terms of reducing uncertainty over the underlying model. Thus, we use this term to guide the
exploration phases, and optimize for the objective

linfo(x,u; Λ1,t, . . . ,Λn,t) =
1

2

n∑
i=1

log(1 + φ(x,u)TΛ−1i,t φ(x,u)). (11)

Note that this is a function of the current information state of the model, specified by the updated
precision matrices Λ1,t, . . .,Λn,t. This provides an objective which encourages exploring states in
the feature space spanned by φ(·, ·) which have highest variance, to quickly reduce uncertainty.

Note that the expected information gain along a trajectory is not simply the sum of the expected infor-
mation gains per transition, as expressed in (Explore-OCP) when summing (11) over k= 0, . . ., N .
However, correctly computing the expected information gain along the trajectory would require
factoring in model updates along the trajectory; we find that considering the sum of single-transition
information gain with the current precision matrices Λi,t is sufficient in guiding exploration for our
work. The problem of optimal exploration is beyond the scope of this framework.

B Discussion of Assumptions

The linear uncertainty representation of the meta-learned dynamics model enables construction of
confidence sets over dynamics models that hold throughout the online learning process, by leveraging
results from the literature on linear contextual bandits. These finite-sample online learning bounds
rely on two critical assumptions on the results of the offline meta-learning process: (1) that the
meta-learning model is capable of fitting the true system dynamics online, and (2) the uncertainty
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estimates that are meta-learned represent a conservative prior over the true dynamics functions. We
restate these assumptions below:

Assumption 2 (Capacity of meta-learned dynamics model). For all θ, there exists k∗i ∈ Rd such
that 〈k∗i ; φ(x,u)〉 = gi(x,u,θ) for all x ∈ X ,u ∈ U , and i = 1, . . . , n.

Assumption 3 (Calibration of meta-learned prior). For θ∼ p(θ), each i= 1, . . ., n, and δi = δ/(2n),
with probability at least (1− δi), ‖k∗i − k̄i,0‖2Λi,0

≤ σ2
εiχ

2
d(1− δi).

These assumptions state that the true dynamics can be represented as a linear combination of
finite dimensional nonlinear features, which applies to a plethora of physical dynamical systems
(Mania et al., 2020; Kakade et al., 2020). Further, it assumes that the meta-learning model learns
appropriate features for such a representation. Formally verifying these assumptions requires making
generalization claims on the meta-learning process, perhaps through a PAC-Bayes analysis (Amit
and Meir, 2018), and is beyond the scope of this paper. If the dataset has adequate coverage of
the state and action spaces and the dynamics distribution p(θ), the offline meta-learning procedure
proposed in (Harrison et al., 2018a) can approach satisfaction of these assumptions. The validity of
these assumptions can be empirically verified through predictive performance on a validation dataset,
and techniques such as temperature scaling can be used to ensure calibration in a post-hoc manner
(Kuleshov et al., 2018). Assumption 2 in particular is comparable to asymptotic representation
results in Gaussian process-based methods (Berkenkamp, 2018). We believe our combination of
meta-learning with these assumptions motivates two directions of future work: safety analysis with
feature mismatch, and finite sample guarantees for meta-learning models.

C Related Work

In contrast to model-free approaches to reinforcement learning, model-based methods (generally)
provide better sample efficiency while enabling guarantees on constraint satisfaction and stability
(Recht, 2019; Deisenroth et al., 2015). These model-based methods rely on the choice of dynamics
model parameterization—for example, neural networks (Levine et al., 2016), Gaussian processes
(GPs) (Deisenroth et al., 2015), or linear models (Coulson et al., 2018)—each with associated
strengths and weaknesses. Recent work in the controls community has leveraged behavioral systems
theory to guarantee stability and probabilistic constraints satisfaction of a non-parametric MPC
scheme (Coulson et al., 2020; Berberich et al., 2020). Although such methods have been shown
to perform well for nonlinear systems (Coulson et al., 2018), their guarantees currently do not
extend beyond time invariant linear systems. Moreover, these approaches rely on linear models,
limiting their expressiveness and potentially reducing their applicability in diverse scenarios as well
as generalization across scenarios.

Nonlinear controllers leveraging a neural network model of the system can provide stability guarantees
(Shi et al., 2019), under smoothness and other assumptions. However, these methods require collecting
a dataset for a single system (i.e., already being able to solve the task), and would need total retraining
if the environment or the system change. Training a neural network dynamics model from scratch for
each environment is prohibitively expensive in terms of data requirements. Our approach combines
neural network features with linear online adaptation to obtain the best of both models: the linear
learning is sample efficient and enables strong guarantees on performance, while the neural network
features are highly expressive and enable generalization across environments. While prior work has
leveraged meta-learning for fast online adaptation (Nagabandi et al., 2019), such approaches are
difficult to provide safety guarantees for, as they typically adapt using online gradient descent in
non-convex problems. In contrast, our linear online adaptation enables construction of confidence
sets for model parameters that hold throughout the learning process.

Gaussian processes have been widely used for safe learning-based control and exploration, as they
can represent any nonlinear function in a bounded reproducing kernel Hilbert space (RKHS). GPs are
nonlinear, Bayesian models that obtain sample efficiency through exact conditioning and reasonably
expressive features through the choice of kernel (Williams and Rasmussen, 2006). While bounds
providing similar guarantees to Theorem 1 can be derived for GPs, such bounds are generally too
conservative, in which case the authors usually set these constants to arbitrary values in experiments
(Berkenkamp et al., 2017; Koller et al., 2018). Alternatively, assuming that the RKHS is known, and
that any function in this space lies in the span of finite-dimensional features φ is common in practice
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(Mania et al., 2020; Kakade et al., 2020). Importantly, this linear structure enables the derivation of
bounds over models (Abbasi-Yadkori et al., 2011), which we use directly in this work. In contrast
with prior work, we explicitly learn features and quantify prior uncertainty in an offline meta-training
procedure (Harrison et al., 2018a,b), enabling us to design a model which is calibrated and accurate
enough to represent possible systems, and allows verifying that representation error is small offline,
before deploying this system.

D Proofs

D.1 Proof of Theorem 1: Uniformly Calibrated Confidence Sets

The proof of Theorem 1 follows from the proof of (Abbasi-Yadkori et al., 2011, Theorem 2), by
making substitutions accordingly for our meta-learning model. To do so, we use the following
lemma, which follows from (Abbasi-Yadkori et al., 2011, Theorem 1), by considering each dimension
i = 1, . . ., n of the meta-learning model independently.
Lemma 1 (Self-Normalized Bound for Vector-Valued Martingales). Let {Ft}∞t=0 be a filtration.
Define {εit}∞t=1, a real-valued stochastic process such that εit is Ft-measurable, and conditionally
σεi -subgaussian. Let {φt}∞t=1 be a Rd-valued stochastic process such that φt is Ft−1-measurable.

Let Λi,0 be a d× d positive definite matrix, and define Λi,t as in (2). Further, for any t ≥ 0, define
St =

∑t
s=1 ε

i
sφs. Then, for any δi > 0, with probability at least (1− δi), for all t ≥ 0,

‖St‖2Λ−1
i,t
≤ 2σ2

εi log

(
1

δ

det(Λi,t)
1/2

det(Λi,0)1/2

)
(12)

Proof. The filtration {Ft}∞t=0 is defined by considering the σ-algebra Ft =
σ(φ1, . . .,φt+1, ε0, . . ., εt), where φt = φ(xt,ut), and the xt are given by (1a). Then, this
result follows by direct application of (Abbasi-Yadkori et al., 2011, Theorem 1), substituting
(X, η, θ, V̄t, V ) with (φ, εi,ki,Λi,t,Λi,0).

We stress that (12) holds jointly for all times t≥ 0, such that P((12))≥ (1− δi). This result is key to
ensure joint chance constraint satisfaction, and guarantee safety and feasibility of our framework.

Next, we prove Theorem 1, which we restate here for completeness.
Theorem 1 (Uniformly Calibrated Confidence Sets). Consider the true system (1a),

xk+1 = h(xk,uk) + g(xk,uk,θ) + εk,

where εk is σε-subgaussian and bounded. Consider the meta-learning model, given as ĝ(x,u) =
Kφ(x,u), where φ : Rn × Rm → Rd, and K is an n × d matrix, with n rows ki. Starting
from (k̄i,0,Λi,0), with k̄i,0 ∈ Rd, and Λi,0 a d × d positive definite matrix, define the sequence
{(k̄i,s,Λi,s)}ts=0, where (k̄i,t,Λi,t) is computed with online data from (1a) using (2) as

Λi,t = ΦTt−1Φt−1 + Λi,0, k̄i,t = Λ−1i,t (ΦTt−1Gi,t + Λi,0k̄i,0), i= 1, . . ., n,

GT
t = [x1−h(x0,u0), . . .,xt−h(xt−1,ut−1)]∈Rn×t, and ΦTt−1= [φ(x0,u0), . . .,φ(xt−1,ut−1)]

∈Rd×t. Further, define δi = δ/(2n), and

βi(Λi,t, δi) = σεi

(√
2 log

(
1

δi

det(Λi,t)1/2

det(Λi,0)1/2

)
+

√
λmax(Λi,0)

λmin(Λi,t)
χ2
d(1−δi)

)
.

Then, under Assumptions 2 and 3,

P
(
‖k∗i − k̄i,t‖Λi,t ≤ βi(Λi,t, δi) ∀t≥ 0

)
≥ (1− 2δi).

Proof. This proof is a straightforward extension of (Abbasi-Yadkori et al., 2011, Theorem 2), where
we use Assumption 3 to provide a probabilistic error bound for the model missmatch over the prior
for k∗i , Lemma 1 to bound the estimation error due to εk, and Boole’s inequality to obtain βi.

Define εi = (εi1, . . ., εit)
T . For any a,b ∈ Rd, and A a d×d positive definite matrix, define the

weighted norm ‖a‖2A = aTAa, and weighted inner product 〈a,b〉A = aTAb. For conciseness, we
drop the indices i and t, and denote (k∗, k̄,Λ, k̄0,Λ0,Φ, ε) = (k∗i , k̄i,t,Λi,t, k̄i,0,Λi,0,Φt−1, ε

i).
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Under Assumption 2, we can writeGi,t = Φk∗ + ε. Then, we rewrite the mean estimate k̄ of k∗ at
time t, as

k̄ = (Λ0 + ΦTΦ)−1(Λ0k̄0 + ΦT (Φk∗ + ε))

= (Λ0 + ΦTΦ)−1ΦT ε+ (Λ0 + ΦTΦ)−1(Λ0 + ΦTΦ)k∗ − (Λ0 + ΦTΦ)−1Λ0(k∗ − k̄0)

= Λ−1ΦT ε+ k∗ −Λ−1Λ0(k∗ − k̄0),

from which we obtain, for any a ∈ Rd, that aT (k̄ − k∗) = 〈a,ΦT ε〉Λ−1 − 〈a,Λ0(k∗ − k̄0)〉Λ−1 .
Note that Λ0 � 0, so Λ � 0, and these inner products are well defined. With this result, by the
Cauchy-Schwarz inequality,

|aT (k̄ − k∗)| ≤ ‖a‖Λ−1
t

(∥∥ΦT ε
∥∥

Λ−1 +
∥∥Λ0(k∗ − k̄0)

∥∥
Λ−1

)
≤ ‖a‖Λ−1

(∥∥ΦT ε
∥∥

Λ−1 +

√
λmax(Λ0)

λmin(Λ)

∥∥k∗ − k̄0∥∥Λ0

)
, (13)

where the second inequality is obtained as∥∥Λ0(k∗ − k̄0)
∥∥2

Λ−1 ≤
λmax(Λ−1)

λmin(Λ−10 )

∥∥Λ0(k∗ − k̄0)
∥∥2

Λ−1
0

=
λmax(Λ0)

λmin(Λ)

∥∥Λ0(k∗ − k̄0)
∥∥2

Λ−1
0

=
λmax(Λ0)

λmin(Λ)

∥∥k∗ − k̄0∥∥2Λ0
.

By Lemma 1, for any δi ≥ 0, with probability at least (1− δi), we have

∥∥ΦT ε
∥∥2

Λ−1 ≤ 2σ2
εi log

(
1

δi

det(Λ)1/2

det(Λ0)1/2

)
∀t ≥ 0. (14)

By Assumption 3, for δi = δ/(2n), with probability at least (1− δi),

‖k∗ − k̄0‖2Λ0
≤ σ2

εiχ
2
d(1− δi). (15)

From (13), by Boole’s inequality4, we have that with probability at least (1− 2δi), for all t ≥ 0, and
any a ∈ Rd,

|aT (k̄ − k∗)| ≤ ‖a‖Λ−1 σεi

(√
2 log

(
1

δi

det(Λ)1/2

det(Λ0)1/2

)
+

√
λmax(Λ0)

λmin(Λ)
χ2
d(1− δi)

)
.

Let a = Λ(k̄ − k∗) in the expression above, to obtain

∥∥k̄ − k∗∥∥2
Λ
≤
∥∥Λ(k̄ − k∗)

∥∥
Λ−1 σεi

(√
2 log

(
1

δi

det(Λ)1/2

det(Λ0)1/2

)
+

√
λmax(Λ0)

λmin(Λ)
χ2
d(1− δi)

)
.

Since
∥∥Λ(k̄ − k∗)

∥∥
Λ−1 =

∥∥k̄t − k∗∥∥Λ
, we divide both sides by

∥∥k̄ − k∗∥∥
Λ

and obtain

∥∥k̄ − k∗∥∥
Λ
≤ σεi

(√
2 log

(
1

δi

det(Λ)1/2

det(Λ0)1/2

)
+

√
λmax(Λ0)

λmin(Λ)
χ2
d(1− δi)

)
∀t ≥ 0, (16)

which holds with probability at least (1− 2δi). As this is the expression for βi, this concludes our
proof.

4P((14)∩ (15)) = 1−P((14)C ∪ (15)C), where AC denotes the negation of A. Then, by Boole’s inequality,
1−P((14)C ∪ (15)C) ≥ 1−P((14)C)−P((15)C) = −1+P((14))+P((15)). Finally, using the lower bounds
on the probabilities that (14) and (15) occur, we obtain P((14) ∩ (15)) ≥ −1 + (1− δi) + (1− δi) = 1− 2δi.
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D.2 Proof of Theorem 2, Part 1: Probabilistic Feasibility

We restate the first part of Theorem 2 for ease of reading.
Theorem 2 (Probabilistic Feasibility). Under Assumptions 1, 2 and 3, there exists an optimization
horizon N ensuring the feasibility of (Explore-OCP) at all times with probability (1− δ).

Proof. Let ninfo the number of exploration phases before (Reach-OCP) becomes feasible5.

Also, let N j
info, and tj =

∑j−1
l=0 N

l
info be, respectively, the planning horizon, and the start time index

of each (Explore-OCP)j .

For conciseness, define (EOCP)j for {(Explore-OCP)j is feasible}, i.e., the event that the j-th
exploration problem is feasible.

Then, by the law of total probability,

P
( ninfo∧
j=0

(EOCP)j

)
= P

( ninfo∧
j=0

(EOCP)j , xtninfo
∈ X0

)
+ P

( ninfo∧
j=0

(EOCP)j , xtninfo
/∈ X0

)

≥ P
( ninfo∧
j=0

(EOCP)j , xtninfo
∈ X0,

)

= P
(

(EOCP)ninfo |
ninfo−1∧
j=0

(EOCP)j , xtninfo
∈X0

)
P
( ninfo−1∧

j=0

(EOCP)j , xtninfo
∈X0

)
.

By Assumption 1, given that xtj ∈ X0, (Explore-OCP)j is feasible for any j-th exploration
phase. Indeed, choose N j

info = 1 for (Explore-OCP)j . Then, uj0 = π(xtj ) is a feasible solution to
(Explore-OCP)j . Thus, the event {(EOCP)j | xtj ∈ X0} holds with probability one.

In particular, {(EOCP)ninfo |
∧ninfo−1
j=0 (EOCP)j ,xtninfo

∈X0} holds with probability one.

Next, we use the law of total probability to leverage our confidence sets over parameters:

P
( ninfo∧
j=0

(EOCP)j

)
≥ P

( ninfo−1∧
j=0

(EOCP)j , xtninfo
∈X0

)

≥ P
( ninfo−1∧

j=0

(EOCP)j , xtninfo
∈X0, k

∗
i ∈ Cδi,tninfo−1

∀i
)

= P
(
xtninfo

∈ X0 |
∧
j

(EOCP)j , k
∗
i ∈ Cδi,tninfo−1

∀i
)
P
(∧

j

(EOCP)j , k
∗
i ∈ Cδi,tninfo−1

∀i
)
.

By construction of the reachable sets {X tj ,δk }N
j
info

k=1 , and by definition of (Explore-OCP)j (since
X tj ,δ
Nj

info
⊂ X0), we have that xtj+1 ∈ X0 given that (Explore-OCP)j is feasible and that k∗i ∈ Cδi,tj ∀i,

for any j-th exploration problem.

Thus, the first term {xtninfo
∈ X0 |

∧
j(EOCP)j , k

∗
i ∈ Cδi,tninfo−1

∀i} holds with probability one.

Thus,
P
( ninfo∧
j=0

(EOCP)j

)
≥ P

( ninfo−1∧
j=0

(EOCP)j , k
∗
i ∈ Cδi,tninfo−1

∀i
)
.

Since (EOCP)0 is feasible with probability one since x0 ∈ X0, and by reasoning by induction for all
j = ninfo, . . ., 0, we obtain that

P
( ninfo∧
j=0

(EOCP)j

)
≥ P

( ninfo−1∧
j=0

k∗i ∈ Cδi,tj ∀i
)
≥ (1− δ),

where the last inequality comes from Theorem 1, which concludes this proof.
5This result also holds if (CC-OCP) is not feasible, and the algorithm can never solve (Reach-OCP) to

reach Xgoal (e.g., if Xgoal is surrounded by obstacles). Indeed, if the algorithm is stuck in an infinite number of
exploration steps, the last inequality of this proof still holds for ninfo →∞, by Theorem 1.
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D.3 Proof of Theorem 2, Part 2: Probabilistic Safety

Next, we prove our result of probabilistic safety. First, we restate second part of Theorem 2 for ease
of reading.
Theorem 3 (Probabilistic Safety). Compute confidence sets for model parameters using (3) and (4).
Using these confidence sets, compute probabilistic reachable sets {X t,δk }Nk=1 satisfying (6). Using
these sets, apply Algorithm 1 and sequentially solve (Explore-OCP) and (Reach-OCP).

Then, assuming that (Reach-OCP) is feasible at some time t, and under Assumptions 2 and 3, the
system is guaranteed to satisfy (1b) i.e., to be safe at all times and eventually reach Xgoal with
probability (1− δ).

Proof. We use a proof by construction. First, let N j
info, and tj =

∑j−1
l=1 N

l
info be, respectively, the

planning horizon, and the start time index of each (Explore-OCP)j , where j= 1, . . ., ninfo, with
ninfo the number of exploration phases. Similarly, define Nreach, and tf to be, respectively, the
planning horizon, and the start time index of (Reach-OCP). For conciseness, define xtjk = xtj+k,
corresponding to the state at time (tj+k) in the j-th phase. Note that without feedback, open-loop
controls satisfy uk ∈U ∀k. Further, define the event that the trajectory during the j-th exploration
phase (or exploitation phase) satisfies all constraints as

{xjinfo ∈ X
j
info} =

{Nj
info∧

k=1

(
x
tj
k ∈ Xfree

)
∩
(
x
tj

Nj
info
∈ X0

)}
, j= 1, . . ., ninfo, (17)

{xreach ∈ Xreach} =

{Nreach∧
k=1

(
x
tf
k ∈ Xfree

)
∩
(
x
tf
Nreach

∈ Xgoal
)}
. (18)

With this notation, we rewrite the safety condition of the original problem we are solving (which is
the one we want to prove in this theorem) as

(1b) = P
(N1

info∧
k=1

(
xk ∈ Xfree

)
∩
(
xN1

info
∈ X0

)
∩ · · · ∩

∑
iN

i
info+Nreach∧

k=
∑

iN
i
info

(
xk ∈ Xfree

)
∩
(
xN ∈ Xgoal

))

= P
(N1

info∧
k=1

(
xt1k ∈ Xfree

)
∩
(
xt1
N1

info
∈ X0

)
∩ · · · ∩

Nreach∧
k=1

(
x
tf
k ∈ Xfree

)
∩
(
x
tf
Nreach

∈ Xgoal
))

= P
( ninfo∧
j=1

{xjinfo ∈ X
j
info} ∩ {xreach ∈ Xreach}

)
:= P

(
{Safely Reached}

)
.

Next, using the above, and by the law of total probability, we note that

(1b) = P
(
{Safely Reached} |k∗i ∈ Cδi,t ∀t, ∀i

)
· P
(
k∗i ∈ Cδi,t ∀t, ∀i

)
+

P
(
{Safely Reached} |k∗i /∈ Cδi,t ∀t, ∀i

)
· P
(
k∗i /∈ Cδi,t ∀t, ∀i

)
≥ P

(
{Safely Reached} |k∗i ∈ Cδi,t ∀t, ∀i

)
· P
(
k∗i ∈ Cδi,t ∀t, ∀i

)
, (19)

where t = t1, . . ., tninfo , tf , and i = 1, . . ., n.

By Assumption 2, our meta-learning model can fit the true dynamics. Hence, if the true parameters
are within the confidence sets Cδi,t, then, the reachable sets X t,δk necessarily contain the state trajectory
on the true system, by definition (6). Using this fact, we can reformulate the constraints using the
reachable sets, since {

X t,δk ⊂ Xfree

}
=
{
xk(K∗) ∈ Xfree |k∗i ∈ Cδi,t, ∀i

}
. (20)

By definition of (Explore-OCP) and (Reach-OCP), the reachable sets are subsets of the safe set,
and the solution satisfies constraints. Hence, given a solution to these problems, we obtain

P
(
xtk(K∗)∈Xfree, k=1, . . ., N |k∗i ∈ Cδi,t, i=1, . . ., n

)
= P

(
X t,δk ⊂Xfree, k=1, . . ., N

)
= 1,
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which also holds for the final constraints xtN ∈ X0, and xtfN ∈ Xgoal. Thus,

P
(
{Safely Reached} |k∗i ∈ Cδi,t ∀t, ∀i

)
= 1.

Combining this result with (19), we obtain that

(1b) ≥ P
(
k∗i ∈ Cδi,t ∀t, ∀i

)
. (21)

This last term holds with probability greater than (1− δ). Indeed, using (a) Boole’s inequality, and
(b) Theorem 1, we obtain

P
(
k∗i ∈ Cδi,t ∀t, ∀i

)
= P

( n∧
i=1

∧
t

k∗i ∈ Cδi,t
)

= 1− P
( n∨
i=1

∨
t

k∗i /∈ Cδi,t
)

(a)

≥ 1−
n∑
i=1

P
(∨

t

k∗i /∈ Cδi,t
)

= 1−
n∑
i=1

(
1− P

(∧
t

k∗i ∈ Cδi,t
))

(b)

≥ 1−
n∑
i=1

(
1− (1− 2δi)

)
= 1−

n∑
i=1

(
2δi
)

= (1− δ).

Since δi = δ/(2n), combined with (21), this concludes this proof.

E Experimental Details and Further Results

Problem formulation and implementation: We evaluate our approach on a planar free-flying space
robot. This system behaves (approximately) as a double integrator, controlled with gas thrusters
and a reaction wheel. We consider the problem of cargo transport, in which the robot is attached
to a payload that results in changes to the inertial properties of the system, resulting in nonlinear
dynamics. This system mimics a cargo unloading scenario that is one plausible near-term application
of autonomous robots on-board the International Space Station (Fluckiger et al., 2018; Ekal and
Ventura, 2019).

The state of the system is given by x = [p, θ,v, ω] ∈ R6, with p,v ∈ R2 the planar position
and velocity, and θ, ω ∈ R the heading and angular velocity, respectively. For safety, we constrain
|vi| ≤ 0.2 m/s, and |ω| ≤ 0.25 rad/s. The control inputs are u := [F,M ] ∈ U ⊂ R3, where
U = [−ūi, ūi] represent the limited control authority from the gas thrusters. We set ū1,2 = 0.15 N,
and ū3 = 0.01 Nm. The payload causes a change in mass, inertia properties and causes the center
of mass to be offset at p0 ∈ R2. The continuous time nonlinear dynamics of the system (which we
write as ẋ = ft(·)) are

ṗ = v, θ̇ = ω, v̇ =
1

m

(
F− ω̇

[
−poy
pox

]
+ ω2po

)
, ω̇ =

1

J

(
M − poxFy + poyFx

)
. (22)

We randomize the mass m, inertia J and center of mass offset p0 according to
m ∼ Unif(25, 60) kg, J ∼ Unif(0.30, 0.70) kg·m2, poi ∼ Unif(−7.5, 7.5) cm, i∈{x, y}. (23)

Using a zero-order hold on the controls and a forward Euler discretization scheme, we discretize (22)
as

xk+1 = xk + ∆t·ft(xk,uk,m,J,po) + εk, (24)
where the εk,i are σεi -subgaussian, each bounded as |εk,i| ≤ (σ2

εiχ
2
1(0.95))1/2. We use this discrete

time nonlinear system in simulation, and to collect training data for offline meta-learning.

We use a nominal model of the system h(·, ·) using (22) with (m̄, J̄ , p̄0) = (35, 0.4,0), which
corresponds to a double integrator model. To represent the unknown model missmatch g(·, ·,θ), we
train an ALPaCA model as described in (Harrison et al., 2018b) for 6000 iterations for all experiments.

For trajectory optimization, we use standard linear-quadratic final and step costs on states and
controls to minimize control cost and deviation to X0 or Xgoal depending on the phase. Specifically,
we maximize the information cost defined in (11) while minimizing control effort, penalizing high
velocities, and minizing the final distance to xg, the center of either X0, or Xgoal. We obtain

max
µ,u

N−1∑
k=0

(
− αinfolinfo(µk,uk) + µTkQµk + uTkRuk

)
+ (µN −xg)TQN (µN −xg). (25)
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small σεi δ # Explore x /∈Xobs x∈Xmin/max xN ∈Xgoal x∈Xall

SEELS 0.1 2.3± 0.01 97.6± 1.9% 97.6± 1.9% 96.8± 2.2% 93.2± 3.1%

SEELS 0.2 2.43± 0.19 95.6± 2.5% 98.8± 1.3% 98.8± 1.3% 93.6± 3.0%

SEELS 0.5 2.22± 0.18 94.8± 2.7% 98.8± 1.3% 97.2± 2.0% 93.2± 3.1%

Mean-Equivalent - 0 39.6± 6.0% 99.6± 0.8% 22.8± 5.2% 19.6± 4.9%

Table 1: Results for 250 randomized experiments for different values of δ, with low noise levels εk, and
M = 1000. For each experiment, we report the number of exploration phases, check constraints satisfaction,
and report the percentage of experiments for which all constraints are satisfied (x∈Xall), with 95% confidence
intervals. We run a mean-equivalent version of SEELS (Algorithm 1) which accounts for the disturbances εk,
but does not consider model uncertainty. Our framework is guaranteed to simultaneously respect all constraints
(1− δ) fraction of the time, which is verified in practice.

high σεi δ # Explore x /∈Xobs x∈Xmin/max xN ∈Xgoal x∈Xall

SEELS 0.1 2.4± 0.14 92.4± 3.3% 99.2± 1.1% 95.6± 2.5% 90.0± 3.7%

SEELS 0.2 2.32± 0.13 91.6± 3.4% 100± 0% 95.6± 2.5% 89.6± 3.8%

SEELS 0.5 1.98± 0.11 87.6± 4.1% 99.2± 1.1% 90.8± 3.6% 82.8± 4.7%

Mean-Equivalent - 0 58.8± 6.1% 99.6± 0.8% 39.2± 6.0% 37.2± 6.0%

Table 2: Results for 250 randomized experiments for different values of δ, with high noise levels εk, and
M = 2500. Our safety guarantees are verified, and the need for exploration is evident, from the low success rate
of an approach neglecting dynamics uncertainty.

In these experiments, we set αinfo = 0.025 for exploration, whereas αinfo = 0 when reaching Xgoal,
and Q= diag([0, 0, 0, 1, 1, 10]), R= diag([10, 10, 10]), and QN = 103diag([1, 1, 0.1, 10, 10, 10])
for both (Explore-OCP) and (Reach-OCP).

Outline of results: We evaluate our framework on multiple problems (250) with different parameters
θ. Specifically, we consider two different sets of σεi , and four environments with different boundary
conditions and obstacles. For the scenarios shown in Fig. 5, we evaluate the sensitivity to δ, to the
number of samples M for reachability analysis with randUP, and the effect of the β-regularizer.

Sensitivity to the magnitude of ε: We consider two different noise levels:

1. σ2
εi = 10−7 for i=1, 2, 4, 5, and σ2

εi = 10−6 for i=3, 6.

2. σ2
εi = 10−6 for i=1, 2, σ2

εi = 10−5 for i=3, 6, and σ2
εi = 10−7 for i=4, 5.

Results for these different noise levels for different δ are reported in Tables 1 and 2. From Table
1, we see that the performance and overall probability of safety for small σεi is not sensitive to
the chosen value of δ. We speculate that failures are mostly due to under-approximations from the
approximate computation of the reachable sets with randUP. For higher noise levels, it is evident
that the conservatism of the algorithm can be tuned by choosing a different value for δ, since failures
come from statistical errors from updating the model with noisy data (see Theorem 1). We also
observe faster times to reach Xgoal when opting for lower probability of safety. In all scenarios,
SEELS provides safety with high probability, verifying the theoretical guarantees of our framework.

Figure 5: Scenarios considered for the ablation study (Fig. 2). Results on harder scenarios (shown in Fig. 1)
showed a similar trend, where we also performed 250 randomized experiments and verified success rate and
safety at 93.2% for δ = 0.1, 90.5% for δ = 0.2, and 88.8% for δ = 0.5, withM = 2500 and βi-regularization.
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