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Abstract

Deep reinforcement learning algorithms require large and diverse datasets in order
to learn successful perception-based control policies. However, gathering such
datasets with a single robot can be prohibitively expensive. In contrast, collecting
data with multiple platforms with possibly different dynamics is a more scalable
approach to large-scale data collection. But how can deep reinforcement learning
algorithms leverage these dynamically heterogeneous datasets? In this work, we
propose a deep reinforcement learning algorithm with hierarchically integrated
models (HInt). At training time, HInt learns separate perception and dynamics
models, and at test time, HInt integrates the two models in a hierarchical manner
and plans actions with the integrated model. This method of planning with hier-
archically integrated models allows the algorithm to train on datasets gathered by
a variety of different platforms, while respecting the physical capabilities of the
deployment robot at test time. Our simulated and real world navigation experiments
show that HInt outperforms conventional hierarchical policies and single-source
approaches.

Figure 1: Overview of our hierarchically integrated models (HInt) algorithm. At training time, HInt separately
trains a perception model and a dynamics model, then at test time, HInt combines the perception and dynamics
model into a single model for integrated planning and execution. Our modular training procedure enables HInt
to train the perception model using data gathered by multiple platforms, such as ground robots and even people
recording video with a hand-held camera, while our integrated model at test time ensures the perception model
only considers trajectories which are dynamically feasible.
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1 Introduction

Machine learning has emerged as a powerful tool for enabling robots to acquire control policies
by learning directly from experience. One of the key guiding principles behind these advances in
robot learning is to leverage large datasets. However, collecting these large and diverse datasets
using a single robot can be prohibitively challenging; for example, in order for a robot to learn to
navigate any sidewalk, the robot must likely gather data from many different cities, and it is typically
impractical to physically transport a single robot to many different locations. What if we could
instead train vision-based robot control policies on large and diverse datasets collected by a variety of
different robots? An ideal method could use data from any platform that provides useful knowledge
about the problem—such an approach would be far more scalable. Unfortunately, data from such
heterogeneous platforms presents a challenge: different platforms have different physical capabilities,
and therefore produce different data. In order to leverage such heterogeneous data, we must properly
account for the underlying dynamics of the data collection platform.

The primary contribution of this work is HInt— hierarchically integrated models for acquiring image-
based control policies from heterogeneous datasets. HInt makes it possible for a robot to operate in
environments it has never been in before, by leveraging experiences gathered by other robots, with
potentially differing dynamics. We demonstrate that HInt successfully learns image-based control
policies from heterogeneous datasets in both simulated and real-world robotic navigation tasks, and
outperforms methods that use single-source data or use conventional hierarchical policies.

2 Related work

Prior work has demonstrated end-to-end learning for vision-based control for a wide variety of
applications [17, 2, 13, 9, 19, 11]. However, these approaches typically require a large amount of
diverse data [7], which hinders the adoption of these algorithms for real-world robot learning. One
approach for overcoming these data constraints is to use teams of robots to gather data; however, these
approaches typically assume that the robots are the same [14], have similar underlying dynamics [3],
or the data is from expert demonstrations [4, 22, 21]. Prior works have also investigated learning
modular vision-based control policies [15, 10, 5, 18, 1, 16], many of which can leverage heteroge-
neous datasets [15]. However, these approaches can fail because the modules cannot communicate
their capabilities and limitations to each other.

3 HInt: Hierarchically Integrated Models

Our goal is to learn image-based control policies that can leverage data from heterogeneous platforms.
The key contribution of our approach, shown in Fig. 2, is to learn separate hierarchical models at
training time, and combine these models into a single integrated model for planning at test time. The
separate hierarchical model training allows our method to leverage datasets gathered by heterogeneous
platforms, while the integrated planning enables our approach to directly map raw sensory inputs to
robot actions that are dynamically feasible for the deployment robot.

At the core of our hierarchically integrated models (HInt) reinforcement learning algorithm are two
predictive models: a high-level, shared perception model and a low-level, robot-specific dynamics
model. The perception model is an image-based predictive model that takes as input the current
image and a sequence of future kinematic poses, and predicts future rewards, while the dynamics
model takes as input the current robot state and a sequence of future low-level actions, and predicts
future kinematic poses.

The perception model is trained using a large, heterogeneous dataset consisting of data gathered by
a variety of robots, all with possibly different underlying dynamics. Meanwhile, the robot-specific
dynamics model is trained only using data from the deployment robot. At test time, because the
output predictions of the dynamics model are the input actions for the perception model, the dynamics
and perception models can be combined into a single integrated model. This integrated model predicts
future rewards, and is used to plan into the future to determine the actions that maximize future
reward. This integrated model is essential because it enables the planner to holistically reason about
the entire system.
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4 Experiments

In our experiments, we aim to answer the following questions:

Q1: Does the ability of HInt to train from datasets gathered by heterogeneous platforms result in
better performance compared to approaches trained from a single data source?

Q2: Does HInt’s integrated model planning approach result in better performance compared to
conventional hierarchy approaches?

In order to separately examine these questions, we investigate Q1 by training the perception module
with multiple different real-world data sources, including data from different environments and
different platforms, and evaluating on a single real-world robot. To examine Q2, we deploy a shared
perception module to systems with different low-level dynamics, in both simulation and the real
world.

4.1 Comparison to Single-Source Models

We first examine Q1. For this experiment, perception data was collected in three different environ-
ments using three different platforms (Fig. 3), and the deployment robot is the Clearpath Jackal. We
compared HInt with the single data source approach from [8], in which only data gathered by a single
platform is used for training and the integrated model is trained end-to-end.

Fig. 4 shows the results comparing HInt to the single data source approach. In all environments1, our
approach is more successful in reaching the goal. Note that even when the single data source method
is trained and deployed in the same environment, HInt still performs better because learning-based
methods benefit from large and diverse datasets. Furthermore, the row labeled “Industrial” illustrates
well how HInt can benefit from data collected with other platforms: although the Jackal robot had
never seen the industrial setting during training, the training set did include data collected by a person
with a video camera in this setting. The increase in performance from including this data (“Kobuki +
Jackal + Human”) shows that the Jackal robot was able to effectively integrate this data into its visual
navigation strategy.

4.2 Comparison to Conventional Hierarchy

We next examine Q2. We compared our integrated approach with the conventional hierarchy approach,
in which the perception model is used to output desired waypoints that are then passed to a low-level
controller [5, 15, 18, 10, 1].

Tab. 1 shows the results comparing HInt versus conventional hierarchy in a simulated experiment,
and Fig. 5 shows the comparison for a real world experiment. In both experiments, we showed that
the conventional hierarchy approach can catastrophically fail if the higher level perception-based
planner sets waypoints for the lower level dynamics-based planner without regard for the physical
capabilities of the robot. In contrast, HInt’s integrated planning approach enables the dynamics model
to inform the perception model about which maneuvers are feasible.

1We could not run experiments in the office environment due to COVID-related closures.

Figure 2: During training, we learn two separate neural
network models. The dynamics model takes as input
the current robot state and a sequence of future actions,
and predicts future changes in poses. The perception
model takes as input the current image observation and
a sequence of future changes in poses, and predicts
future rewards. When deploying, the dynamics and
perception models are combined into a single integrated
model that is used for planning and executing actions
that maximize reward.
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Indoor Robot in Office Outdoor Robot in Urban Person in Industrial

Figure 3: Training data was gathered by an indoor Yujin Kobuki robot in an office (3.7 hours), an outdoor
Clearpath Jackal robot in an urban environment (3.5 hours), and a person with a video camera in an industrial
area (1.2 hours).

Perception Data Sources
Single-Source [8] HInt (ours)

Kobuki
(Office)

Jackal
(Urban)

Human
(Industrial)

Kobuki
(Office)+ Jackal

(Urban)
Kobuki
(Office)+ Jackal

(Urban)+ Human
(Industrial)

Test
Env

Urban 0% 13% N/A 100% 100%

Industrial 0% N/A 0% 33% 87%

Figure 4: Comparison of single data source models [8] versus our multiple data source approach in an urban
and industrial environment. Each approach was evaluated from the 3 same start locations in each environment
(corresponding to the red, green, and blue lines), and was ran 5 times from each start location. The quantitative
results show what percentage of the 15 trials successfully reached the goal.

Normal Limited Steering Right turn only 0.25 second lag
Conventional Hierarchy 96% 68% 0% 0%
HInt (ours) 96% 84% 56% 40%

Table 1: Comparison of conventional hierarchy (e.g., [5, 10, 1]) versus HInt (ours) approaches at deployment
time in a simulated environment. Four different robot dynamics models were evaluated—normal, limited
steering, right turn only, and 0.25 second lag. Both approaches were evaluated from the same 5 starting positions,
with 5 trials for each starting position.

Normal Limited Steering
Conventional
Hierarchy 80% 0%

HInt (ours) 80% 100%

Figure 5: Comparison of conventional hierarchy vs HInt (ours)
approaches in a real world experiment, on two robots with different
dynamics: a Jackal robot with full dynamical range (normal), and
a Jackal robot with its steering limit to 40% of its full dynamical
range (limited steering). Both approaches were evaluated with
5 trials each from the same starting position. The table displays
percentage of trajectories that successfully reached the goal.
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