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Abstract

In this paper, we propose a parallel active learning algorithm called SPATS (sparse
parallel asynchronous Thompson sampling) that using multiple ground robots
(agents) efficiently locates survivors of disasters. Unlike existing algorithms,
SPATS is a practical algorithm that takes into account sparsity, lack of reliable
communication to a central unit and sensing action constraints.

1 Introduction

Active search and rescue defines the problem of efficiently locating rescue mission targets in an
unknown environment by interactively collecting data [6, 7]. Most existing active search algorithms
are developed for a single agent and are not extendable to multi agent scenarios. As an example, [6]
uses information greedy approaches to decide on best sensing actions for its agent. If we were to use
multiple agents for this info-greedy method, all agents would make the same exact decision at each
time step wasting resources of other agents. For other active search algorithms that are extendable to
multi agent scenarios, they usually need a central control system to decide on the sensing actions and
movements of all agents. However, in rescue missions agents generally lack a reliable communication
channel to each other and more importantly to a central controller. Another consideration of this
paper is a realistic constraint on the sensing actions. Inspired by search robots, we assume that
each agent can only sense its immediate vicinity. In other words, each agent senses a triangular
area in immediate camera view of the space at each time step. We furthermore model noise in our
observations in accordance to the distance of the objects from the agent’s position.

2 Problem and Motivation

Our goal in active search is to efficiently search for targets in an unknown environment by actively
taking sensing actions given all the observations thus far. This can be thought of as an active learning
problem setting (referred to as “Design of Experiment” in statistical literature [9]). In particular,
looking at Figure 1, let us assume the gridded yellow area depicts an area of interest for the rescue
mission and the marks “X” show the location of the rescue subjects. Our goal is to send agents
ground robots to sense around and search for the rescue subjects without human interaction or any
communication with a central unit and with as few measurements as possible. In other words, agents
unreliably communicate their measurements with each other but there is no central unit to dictate
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Figure 1: Robots are locating the objects of interest by searching the environment with its camera.

actions to the agents. Instead, each agent must be equipped with an intelligent data acquisition
procedure that uses the available measurements from itself and the surrounding agents to decide on
its next action, i.e. where to sense next.

While these assumptions are practical in a search and rescue application, existing search algorithms
are generally active learning algorithms that focus on single agent scenarios and fail under multi-agent
assumptions. This is because such algorithms are in general in batch mode and hence require a central
unit to coordinate between agents at all times and pick a batch of sensing actions for all agents at a
time (e.g. [1, 2]). In contrast, our active search problem has no central unit.

Mathematical Formulation: We describe the mission environment with a matrix B where we
assume that we have no knowledge on its prior distribution other than knowing it is sparse. A sparse
signal has only a handful of nonzero elements and is zero elsewhere. We assume he number of these
nonzero elements are small but are unknown to the agents. Such assumption is very sensible for
example in an earthquake survival mission where number of survivors are small (sparse) but unknown.
For each agent, we can write the sensing operation as follows:

yt = Xtβ + nt, nt ∼ N (0, σ2). (1)

Here, β with length N is the flattened version of matrix B, matrix Xt describes the sensing matrix
at time t (grey triangles representing camera view point), yt is the observation vector and nt is
its corresponding observation noise at time t. Let us assume the overall number of measurements
available to all agents are T. Our objective is to estimate the sparse vector β with as few measurements
T as possible. Each time step t, we choose a sensing action Xt given the data sequence Dt−1 =
{(X1, y1), . . . , (Xt−1, yt−1)}.

3 Background and Related Work

In robotics, methods that deal with active search generally aim at autonomously building topological
(identify obstacles and clearways) and/or spatial maps of a region. Our active search problem differs
from topological mapping techniques such as SLAM [4] and can be most closely related to spatial
mapping. For example, [7] identifies strong signals in environments with background information
using trajectory planning with confidence intervals; but, unlike our problem setting, their algorithm
is developed for a single agent performing point sensing observations. [5] formulates a multi agent
game theoretic approach to coordinate unmanned aerial vehicles for cooperative search. However,
they require the actions of neighboring agents for optimal action selection which we find impractical.

4 Our Proposed Method

To combat the multi agent issue, we propose Thompson Sampling (TS). TS is an exploration-
exploitation algorithm applicable to active learning problems and originally introduced for clinical
trials on two groups in [10]. Using TS properties as analyzed in [3], we can use TS to develop
asynchronous parallel active learning method where each agent can make independent and intelligent
decision on the next sensing action given the available measurements. Furthermore, [3] shows that
such asynchronous TS algorithm outperforms all existing parallel Bayesian Optimization methods.
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The TS approach is provided in Algorithm 1. In short, the algorithm consists of T steps. In each step,
we in turn 1) Sample β? from posterior distribution of β, 2) optimize for a sensing action Xt using a
reward function that assumes the sample from step 1 is the true state of the world 3) using the sensing
action from step 2 make a new observation and add it to the list of all available measurements.

4.1 Challenges of Thompson Sampling

Unfortunately, implementing TS with a sparse prior on vector β leads to poor performance that is on
par with a point-wise algorithm that exhaustively searches all locations one at a time. Next, we will
combat this challenge in 2 steps.

Step 1. Detecting the problem: To combat this challenge, we first need to identify the problem.
We can associate this poor performance with one of the failure modes of TS discussed in Sec. 8.2 of
the tutorial by [8]. According to this tutorial, TS faces a dilemma when solving certain kinds of active
learning problems. One such scenario are problems that require a careful assessment of information
gain. In general, by optimizing the expected reward, TS always restricts its actions to those that have
a chance in being optimal. However, in certain active learning problems such as ours suboptimal
actions can carry additional information regarding the parameter of interest. In particular, since the
sample β? is sparse, TS assuming this sample is the true state of the world would pick sparse sensing
actions. However, if the algorithm had picked larger sensing actions like those in Figure 1, it could
have eliminated a larger portion of the area as possible rescue subject locations.

Algorithm 1 Thompson Sampling

Assume: prior β ∼ p0 and likelihood p(yt|xt, β)
For t = 1, ..., T

Sample β? ∼ p(β|Dt−1) Posterior Sampling
Select xt = argmaxx Reward(β?, Dt−1, x) Design
Observe yt given action xt
Dt = Dt−1 ∪ (xt, yt)

Step 2. Proposing a solution: To overcome this issue, we propose making an assumption on the
prior distribution that the neighboring entries of the sparse vector β are spatially correlated, i.e. β
is block sparse. Such spatial correlation creates the most compatible results to the region sensing
constraint which only approves sensing actions with a single triangular non-zero block of sensors.
Furthermore, we expect block sparsity to introduce exploration ability while also keeping sparsity
a useful information in the recovery process. In particular, by gradually reducing the length of the
blocks from a large value, we gently trade exploration with exploitation capability over time. I call
this algorithm SPATS (short for Sparse Parallel Asynchronous Thompson Sampling) as given in
Algorithm 2 for M agents. The derivation of the posterior and Reward of Algorithm 2 using a block
sparse prior have been excluded here for sake of brevity. For this derivations, we use the block sparse
prior and estimator proposed in [11].

Algorithm 2 SPATS: Sparse Parallel Asynchronous Thompson Sampling

Assume: Sensing model 1, M agents
Set: D0 = ∅, block-sparse signal β with block length L = N/M
For t = 1, ..., T

Wait for an agent to finish
For the free agent:

Sample β? ∼ p(β|Dt−1, γ, B)
Select xt=argmaxx Reward(β?, Dt−1, x)
Observe yt given action xt
Dt = Dt−1 ∪ (xt, yt)
if t%M = 0 then L = L/2
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Figure 2: Full recovery rate of SPATS and RSI for 1, 2, 4 and 8 agents for sparsity rate k = 5

5 Results and contributions

5.1 Results

We now compare the performance of our proposed SPATS algorithm against the information-theoretic
approach called RSI algorithm proposed in [6] extended to multi-agent scenario. Throughout the
experiments, we focus on locating 5 targets in an environment with grid size of N = 8 × 16 and
noise variance of σ2 = 1. We then vary the number of measurements T and compare the mean and
standard error of the full recovery rate over 50 random trials. The full recovery rate is defined as the
rate at which an algorithm correctly recovers the entire vector β over the random trials.

Figure 2 shows the performance of SPATS versus RSI with 1, 2, 4 and 8 agents. Here, SPATS signifi-
cantly outperforms RSI because SPATS is carefully designed to use randomness from Thompson
Sampling in its reward function such that multiplying the number of agents by M would multiply its
full recovery rate by a factor of M (as evident in Figure 2a). However, without any randomness in
RSI’s reward function, multiplying the number of agents will not improve RSI’s performance as all
agents will be repeating the same sensing action at a given time on par with a single agent setting.

5.2 Contributions
• We proposed a novel multi-agent active search algorithm called SPATS for search and rescue

missions that outperforms existing algorithms.
• SPATS actively locates sparse targets in an unknown Environment using multiple agents

that asynchronously make independent data-collection decisions without the presence of a
central controller.

• SPATS is a completely nonparametric algorithm and does not need to know the number of
targets.

• We showed how sparsity in its nature limits the exploration factor in active learning and we
propose block sparsity to tackle this problem.

• To demonstrate the efficacy of SPATS, we apply it to synthetic and photo-realistic game
environments in an asynchronous multi-agent setting.

• Besides search and rescue missions, SPATS can be applied to any multi-agent active learning
algorithm with sparsity constraint such as active learning applications of detecting gas
leak, pollution sources, remote sensing, multi-armed bandits, mobile sensor networks and
adaptive compressive sensing.
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