
Model-based Policy Search
for Partially Measurable Systems

Fabio Amadio˚
amadiofa@dei.unipd.it

Alberto Dalla Libera˚
dallaliber@dei.unipd.it

Ruggero Carli˚
carlirug@dei.unipd.it

Daniel Nikovski:
nikovski@merl.com

Diego Romeres:
romeres@merl.com

Abstract

In this paper, we propose a Model-Based Reinforcement Learning (MBRL) algo-
rithm for Partially Measurable Systems (PMS), i.e., systems where the state can
not be directly measured, but must be estimated through proper state observers.
The proposed algorithm, named Monte Carlo Probabilistic Inference for Learning
COntrol for Partially Measurable Systems (MC-PILCO4PMS), relies on Gaussian
Processes (GPs) to model the system dynamics, and on a Monte Carlo approach
to update the policy parameters. W.r.t. previous GP-based MBRL algorithms,
MC-PILCO4PMS models explicitly the presence of state observers during policy
optimization, allowing to deal PMS. The effectiveness of the proposed algorithm
has been tested both in simulation and in two real systems.

1 Introduction

Reinforcement Learning (RL) [1] has achieved outstanding results in many different environments.
MBRL algorithms seem a promising solution to apply RL to real systems, due to their data-efficiency
w.r.t. model-free RL algorithms. In particular, remarkable results have been obtained relying on
Gaussian Processes (GPs) [2] to model the systems dynamics, see for instance [3, 4, 5, 6]. In this
paper, we cosider the application of MBRL algorithms to PMS, i.e., systems where only a subset
of the state components can be directly measured, and the remaining components can be estimated
through proper state observer. PMS are particularly relevant in real world applications, think for
example to mechanical systems, where, typically, only positions are measured, while velocities
are estimated thorough numerical differentiation or more complex filters. The proposed algorithm,
named MC-PILCO4PMS, relies on Gaussian Processes (GPs) to model the system dynamics, and
on a Monte Carlo approach [7] to optimize the policy parameters. W.r.t. previous GP-based MBRL
algorithms, such as [3, 4, 5], MC-PILCO4PMS models explicitly the presence of two different state
observers during the two phases of model learning and of policy optimization. This improves the
characterization of the PMS in the two phases and so the control performance. In the following we
provide a description of the proposed algorithm, assuming that it is applied to mechanical systems
where only positions measurement are available. However, the algorithm generalizes to any PMS.

2 Problem Setting

Consider a mechanical system with dq degrees of freedom, and denote with xt “ rqTt , 9qTt s
T its

state, where qt P Rdq and 9qt P Rdq are, respectively, the vector of the generalized coordinates and
˚Deptartment of Information Engineering, University of Padova, Via Gradenigo 6/B, 35131 Padova, Italy
:Mitsubishi Electric Research Laboratories (MERL), Cambridge, MA 02139

NeurIPS 2020 3rd Robot Learning Workshop: Grounding Machine Learning Development in the Real World.

its derivative w.r.t. time. Assume that joint positions can be directly measured, while 9qt must be
estimated from the history of qt measurements. Moreover, let the system be Markovian, and describe
its discrete-time dynamics as xt`1 “ fpxt,utq `wt, where fp¨q is an unknown transition function,
ut P Rdu represents the system input, whilewt „ N p0,Σwq models uncertainty. The objective of
RL algorithms is learning to accomplish a given task based on interaction data. The task is encoded
in a cost function cpxtq, defined to characterize the immediate penalty for being in state xt. The
system inputs are chosen in accordance with a policy πθ : x ÞÑ u that depends on the parameter
vector θ. Then, the objective is to find the policy that minimizes the expected cumulative cost over a
finite number of time steps T , with initial state distribution ppx0q, i.e., Jpθq “

řT
t“0 Ext rcpxtqs.

3 Method

MC-PILCO4PMS consists of the iteration of three phases: (i) model learning, (ii) policy optimization,
and (iii) policy execution. In the first phase, MC-PILCO4PMS relies on GPR to estimate the one-
step-ahead system dynamics, while for the optimization of the policy parameters, MC-PILCO4PMS
implements a gradient-based strategy. In the following, we briefly discuss the two phases.

3.1 Model Learning

Dynamics model. The proposed one-step-ahead GP model exploits the intrinsic correlation between
the position and velocity. In our algorithm a distinct GP model is learned to predict the velocity
change, while positions are obtained by integration. This approach is different from previous GP-
based MBRL algorithms, such as [3, 4, 5], that learn one independent model for each state component.
Let us indicate the components of qt and 9qt with qpiqt and 9q

piq
t , respectively, where i P t1, . . . , dqu.

Then, let ∆
piq
t “ 9q

piq
t`1 ´ 9q

piq
t be the difference between the value of the i-th velocity at time t ` 1

and t, and ypiqt the noisy measurement of ∆
piq
t . For each velocity component i, we model ∆

piq
t

with a distinct GP with zero mean and kernel function kp¨, ¨q, which takes as input x̃t “ rxt,uts.
Details on the kernel choice can be found in Appendix 6.1. In GPR the posterior distribution of
∆
piq
t given the data is Gaussian, with mean and covariance available in closed form, see [2]. Then,

given the GP input x̃t “ rxt,uts, a prediction of the velocity changes ∆̂
piq
t can be sampled from the

aforementioned posterior distribution. When considering a sufficiently small sampling time Ts, it is
reasonable to assume constant accelerations between two consecutive time-steps, and the predicted
positions and velocities are obtained with the following equations, q̂piqt`1 “ q

piq
t ` Ts 9q

piq
t ` Ts

2 ∆̂
piq
t

and 9̂qt`1 “ 9q
piq
t ` ∆̂

piq
t for i P t1, . . . , dqu.

Training data computation. As described before, velocities are not accessible and have to be
estimated from measurements of positions. Notice that the velocity estimates used to train the
GP models can be computed offline, exploiting the (past and future) history of measurements to
improve accuracy. Well filtered data, that resemble the real states of the system, improve significantly
the adherence between the learnt model and the real system. In our experiments, we computed
offline the velocities used to train the GPs, using for example, the central difference formula, i.e.,
9qt “ pqt`1 ´ qt´1q{p2Tsq, which is an acausal filter. We would like to underline that these state
estimates are different from the ones computed real-time and provided to the control policy during
system interaction. Typically, due to real-time constraints, online estimates are less accurate and it is
fundamental to keep this in consideration during policy optimization as we can see in the following.

3.2 Policy optimization

MC-PILCO4PMS optimizes the policy parameters with a gradient-based strategy. At each opti-
mization step the algorithm performs the following operations: (i) approximation of the cumulative
cost relying on a Monte Carlo approximation; (ii) computation of the gradient and update of θ.
More precisely, the algorithm samples M particles from the initial state distribution ppx0q, and
simulates their evolution for T steps. At each simulation step the inputs are selected in accordance
with the current policy, and the next state is predicted with the GP models previously described. This
procedure models the propagation of the model uncertainty for long-term predictions. Then, the
Monte Carlo estimate of the cumulative cost is Ĵpθq “

řT
t“0

´

1
M

řM
m“1 c

´

x
pmq
t

¯¯

, where xpmqt

2

denotes the state of the m-th particle at time t. The gradient is computed by backpropagation on the
computational graph of Ĵpθq, exploiting the reparametrization trick [8] to propagate the gradient
through the stochastic operations, i.e., the sampling from the GP posteriors distribution. Advantages
of MC based long-term predictions w.r.t to e.g., moment matching [3] are that no assumptions on the
state distribution and on the kernel function in the GP models have to be made. The policy parameters
are updated using the Adam solver [9]. In the remainder of this section we describe the particles
simulation, which is the main novelty introduced to deal with PMS.

Particles simulation with PMS. In order to deal with PMS we not only simulate the evolution of
the system state, but also the evolution of the observed states, modeling the measurement system and
the online state observers implemented in the real system. A block scheme of the particles generation
is reported in Fig.1. Let xpmqt “ rq

pmq
t , 9q

pmq
t s be the state of the m-th particle at the simulation step t

predicted by the GP models. In order to transform the prediction of the system state to the observed
state, firstly, we simulate the measurement system by corrupting positions with a zero mean Gaussian
i.i.d noise epmqt : q̄pmqt “ q

pmq
t `e

pmq
t . Secondly, the measured states are used to compute an estimate

of the observed states: zpmqt “ fzpq̄
pmq
t . . . q̄

pmq
t´mq , z

pmq
t´1 . . . z

pmq
t´1´mz

q, where fz is the online state
observer implemented in the real system, with memory mq and mz . Finally, the control inputs for
each particle are computed as πpzpmqt q, the next particles states are sampled from the GP dynamics,
and the procedure is iterated. The procedure aims at obtaining robustness w.r.t. delays and distortions
introduced by measurement noise and online observers. Notice that selecting the inputs as πpxpmqt q,
as done in several previous MBRL algorithms, is equivalent to assume full access to the system state,

Particle
measurements

Particle online
state estimates

Model of
the Sensor

Model of
the Online
Estimator

Policy

Particle controls

Particle states

GP
Model

Figure 1: Block schemes illustrating particles genera-
tion in MC-PILCO4PMS.

which is often an unrealistic assumption when
dealing with real systems, since the difference
between the system state and the observed state
might be significant. This is a key differentia-
tion of our method. Let us denote, MC-PILCO,
the version of the proposed algorithm which as-
sumes fully access to the system state during
policy optimization. A numerical comparison
between MC-PILCO and two state-of-the-art
GP-based MBRL algorithms is reported in the
Appendix 6.3. The results obtained show that
MC-PILCO overperforms both the algorithms
in terms of data-efficiency and accuracy.

4 Experiments

MC-PILCO4PMS has been tested both in simulation and in real systems. First, we validate in
simulation the impact of taking into consideration the measurement system and the online filter
during particle simulation. Second, MC-PILCO4PMS has been successfully applied to two real
systems: a Furuta pendulum and a Ball-and-Plate system. Further details about the implementation
of the algorithm on the presented systems can be found in Appendices 6.2, 6.4, 6.5.

Simulation as proof of concepts. Here, we test the relevance of modeling the presence of online
observers on a simulated cart-pole system. The objective is to learn a policy able to swing-up the
pole and stabilize it in the upwards equilibrium, while keeping the cart stationary. We assumed to
be able to measure only the cart position and the pole angle. The online estimates of the velocities
were computed by means of causal numerical differentiation followed by a first order low-pass filter.
The velocities used to train the GPs were derived with the central difference formula. Two policy
functions have been trained: the first has been derived with MC-PILCO, assuming direct access to
the full state predicted by the model; the second policy has been derived using MC-PILCO4PMS. In
Figure 2, we report the results of a Monte Carlo study with 400 runs. Even though the two policies
perform similarly when applied to the learned models, the results obtained with the cart-pole system
are significantly different. MC-PILCO4PMS solves the task in all 400 attempts. In contrast, in several
attempts, the MC-PILCO policy does not solve the task, due to delays and discrepancies introduced
by the online filter and not considered during policy optimization.

3

outer=0, inner=0 outer=0, inner=1

outer=0, inner=2 outer=0, inner=3

outer=1, inner=0 outer=1, inner=1

outer=1, inner=2 outer=1, inner=3

−1
0
1

Ca
rt[

m
]

ROLLOUT TEST

0 1 2

−π
0
π

Po
le

[ra
d]

0 1 2

−1
0
1

Ca
rt[

m
]

0 1 2
Time[s]

−π
0
π

Po
le

[ra
d]

0 1 2
Time[s]

M
C-

PI
LC

O
M

C-
PI

LC
O4

PM
S

Figure 2: Comparison of 400 sim-
ulated particles rollout (left) and
the trajectories performed applying
repetitively the policy 400 times in
the system (right) with the simulated
cart-pole system. MC-PILCO re-
sults are on the top plots, while MC-
PILCO4PMS are on the bottom.

−π

0

π

Tr
ia

l 1

θv [rad]

SE SE+P(2) SP

θh [rad]

−π

0

π

Tr
ia

l 2

−π

0

π

Tr
ia

l 3

−π

0

π

Tr
ia

l 4

−π

0

π

Tr
ia

l 5

0 1 2
Time [s]

−π

0

π

Tr
ia

l 6

0 1 2
Time [s]

Figure 3: Trajectories for the pen-
dulum angle (left) and arm angle
(right) obtained at each trial. For all
the kernels, the angles are plotted
up to the trial that solved the task.

−0.1 0.0 0.1
X [m]

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

Y
[m

]

Figure 4: Ten different ball tra-
jectories obtained on the Ball-and-
Plate under the final policy learned
by MC-PILCO4PMS. Steady-state
positions are marked with black
crosses. The dashed circle has the
same diameter of the used ball.

Furuta Pendulum. The Furuta pendulum [10] is a popular under-actuated benchmark system that
consists of a driven arm, revolving in the horizontal plane, with a pendulum attached to its end, which
rotates in the vertical plane. Let θh be the horizontal angle of the arm, and θvt the vertical angle of the
pendulum. The objective is to learn a controller able to swing-up the pendulum and stabilize it in the
upwards equilibrium (θvt “ ˘π [rad]) with θht “ 0 [rad]. Offline estimates of velocities for the GP
model have been computed by means of central differences. Causal numerical differentiation were
used for the online estimation. MC-PILCO4PMS managed to solve the task using the three different
choices of kernel functions presented in Appendix 6.1. In Figure 3, we show the resulting trajectories
for each trial. These experiments show the effectivness of MC-PILCO4PMS and confirm the higher
data efficiency of more structured kernels, which is one of the advantage that MC-PILCO4PMS offers
by allowing any kernel function while in methods like PILCO the kernel choice is limited. For best
of our knowledge, with 9 [s] of training data this algorithm is the most data-efficient to solve a FP.

Ball-and-Plate. The ball-and-plate system is composed of a square plate that can tilt in two or-
thogonal directions by means of two motors. On top of it, there is a camera to track the ball and
measure its position on the plate. The objective of the experiment is to learn how to control the motor
angles in order to stabilize the ball around the center of the plate. Measurements provided by the
camera are very noisy, and cannot be used directly to estimate velocities from positions. We used
a Kalman smoother [11] for the offline filtering of ball positions and associated velocities. Instead,
in real-time we used a Kalman filter [12] to estimate online the ball state from noisy measures of
positions. MC-PILCO4PMS learnt a policy to stabilize the ball around the center starting from any
initial position after the third trial, 11.33 [s] of interaction with the system. We tested the learned
policy starting from ten different points, see Figure 4. The mean steady-state error, i.e. the average
distance of the final ball position from the center observed in the ten trials, was 0.0099 [m], while the
maximum measured error was 0.0149 [m], which is lower than the ball radius of 0.016 [m].

5 Conclusions

We have presented a MBRL algorithm called, MC-PILCO4PMS, which does not assume that all
the components of the state can be measured and we successfully applied it to robotic systems. The
algorithm employs GPs to derive a probabilistic model of the system dynamics. Policy parameters
are updated through a Monte Carlo gradient-based strategy: expected cumulative cost is estimated by
averaging over hundreds of simulated rollouts, and policy gradient is computed by backpropagation
on the resulting computational graph. We showed the importance of manipulating the measurements
to both provide accurate state estimates to the model learning algorithm and to reproduce the
measurement system together with the online state observer during policy optimization.

4

References
[1] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press,

2018.

[2] Christopher KI Williams and Carl Edward Rasmussen. Gaussian processes for machine learning.
MIT press Cambridge, MA, 2006.

[3] Marc Deisenroth and Carl E Rasmussen. Pilco: A model-based and data-efficient approach
to policy search. In Proceedings of the 28th International Conference on machine learning
(ICML-11), pages 465–472, 2011.

[4] Paavo Parmas, Carl Edward Rasmussen, Jan Peters, and Kenji Doya. Pipps: Flexible model-
based policy search robust to the curse of chaos. In International Conference on Machine
Learning, pages 4065–4074, 2018.

[5] Konstantinos Chatzilygeroudis, Roberto Rama, Rituraj Kaushik, Dorian Goepp, Vassilis Vassili-
ades, and Jean-Baptiste Mouret. Black-box data-efficient policy search for robotics. In 2017
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 51–58.
IEEE, 2017.

[6] Diego Romeres, Devesh K Jha, Alberto DallaLibera, Bill Yerazunis, and Daniel Nikovski.
Semiparametrical gaussian processes learning of forward dynamical models for navigating in a
circular maze. In 2019 International Conference on Robotics and Automation (ICRA), pages
3195–3202. IEEE, 2019.

[7] Russel E Caflisch et al. Monte carlo and quasi-monte carlo methods. Acta numerica, 1998:1–49,
1998.

[8] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

[9] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[10] Benjamin Seth Cazzolato and Zebb Prime. On the dynamics of the furuta pendulum. Journal of
Control Science and Engineering, 2011, 2011.

[11] Garry A Einicke. Optimal and robust noncausal filter formulations. IEEE Transactions on
Signal Processing, 54(3):1069–1077, 2006.

[12] R. E. Kalman. A New Approach to Linear Filtering and Prediction Problems. Journal of Basic
Engineering, 82(1):35–45, 03 1960.

[13] Alberto Dalla Libera, Ruggero Carli, and Gianluigi Pillonetto. A novel multiplicative polynomial
kernel for volterra series identification. arXiv preprint arXiv:1905.07960, 2019.

[14] A. D. Libera and R. Carli. A data-efficient geometrically inspired polynomial kernel for robot
inverse dynamic. IEEE Robotics and Automation Letters, 5(1):24–31, 2020.

[15] D. Nguyen-Tuong and J. Peters. Using model knowledge for learning inverse dynamics. In
2010 IEEE International Conference on Robotics and Automation, pages 2677–2682, 2010.

5

6 Appendix

6.1 Kernel functions

One of the advantages of the particle-based policy optimization method is the possibility of choosing
any kernel functions without restrictions. Hence, we considered different kernel functions as examples
to model the evolution of physical systems. But the reader can consider a custom kernel function
appropriate for his application.

Squared exponential (SE). The SE kernel represents the standard choice adopted in many different
works. It is defined as

kSEpx̃tj , x̃tkq :“ λ2e´||x̃tj´x̃tk ||
2
Λ´1 , (1)

where the scaling factor λ and the matrix Λ are kernel hyperparameters which can be estimated by
marginal likelihood maximization. Typically, Λ is assumed to be diagonal, with the diagonal elements
named lengthscales.

SE + Polynomial (SE+Ppdq). Recalling that the sum of kernels is still a kernel [2], we considered also
a kernel given by the sum of a SE and a polynomial kernel. In particular, we used the Multiplicative
Polynomial (MP) kernel, which is a refinement of the standard polynomial kernel, introduced in [13].
The MP kernel of degree d is defined as the product of d linear kernels, namely,

k
pdq
P px̃tj , x̃tkq :“

d
ź

r“1

´

σ2
Pr ` x̃

T
tjΣPr x̃tk

¯

.

where the ΣPr ą 0 matrices are distinct diagonal matrices. The diagonal elements of the ΣPr ,
together with the σ2

Pr
elements are the kernel hyperparameters. The resulting kernel is

kSE`P pdqpx̃tj , x̃tkq “ kSEpx̃tj , x̃tkq ` k
pdq
P px̃tj , x̃tkq. (2)

The idea motivating this choice is the following: the MP kernel allows capturing possible modes of
the system that are polynomial functions in x̃, which are typical in mechanical systems [14], while
the SE kernel models more complex behaviors not captured by the polynomial kernel.

Semi-Parametrical (SP). When prior knowledge about the system dynamics is available, for example
given by physics first principles, the so called physically inspired (PI) kernel can be derived. The PI
kernel is a linear kernel defined on suitable basis functions φpx̃q, see for instance [6]. More precisely,
φpx̃q P Rdφ is a, possibly nonlinear, transformation of the GP input x̃ determined by the physical
model. Then we have

kPIpx̃tj , x̃tkq “ φ
T
px̃tj qΣPIφpx̃tkq,

where ΣPI is a dφ ˆ dφ positive-definite matrix, whose elements are the kPI hyperparameters; to
limit the number of hyperparameters, a standard choice consists in considering ΣPI to be diagonal.
To compensate possible inaccuracies of the physical model, it is common to combine kPI with an SE
kernel, obtaining so called semi-parametric kernels [15, 6], expressed as

kSP px̃tj , x̃tkq “ kPIpx̃tj , x̃tkq ` kSEpx̃tj , x̃tkq.

The rationale behind this kernel is the following: kPI encodes the prior information given by the
physics, and kSE compensates for the dynamical components unmodeled in kPI .

6.2 Simulated Cart-pole

The physical properties of the cart-pole system considered are the following: the masses of both cart
and pole are 0.5 [kg], the length of the pole is L “ 0.5 [m], and the coefficient of friction between cart
and ground is 0.1. The state at each time step t is defined as xt “ rpt, 9pt, θt, 9θts, where pt represents
the position of the cart and θt the angle of the pole. The target states corresponding to the swing-up
of the pendulum is given by pdes “ 0 [m] and |θdes| “ π [rad]. The downward stable equilibrium
point is defined at θt “ 0 [rad]. As done in [3], in order to avoid singularities due to the angles, xt
is replaced with the state representation x̄t “ rpt, 9pt, 9θt, sinpθtq, cospθtqs inside GP inputs. For the
GP models SE kernels have been chosen (1). The control action is the force that pushes the cart
horizontally. We considered white measurement noise with standard deviation of 3 ¨ 10´3, and as
initial state distribution N pr0, 0, 0, 0s, diagpr10´4, 10´4, 10´4, 10´4sqq. In order to obtain reliable

6

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5
PILCO 2% 4% 20% 36% 42%
Black-DROPS 0% 4% 30% 68% 86%
MC-PILCO 0% 14% 78% 94% 100%

Table 1: Success rate per trial obtained with PILCO, Black-DROPS and MC-PILCO.

estimates of the velocities, samples were collected at 30 [Hz]. The number of particles has been set
to M “ 400 in all the tests.

The cost function optimized in MC-PILCO is the following,

cpxtq “ 1´ exp

˜

´

ˆ

|θt| ´ π

lθ

˙2

´

ˆ

pt
lp

˙2
¸

, (3)

where lθ and lp are named lengthscales. Notice that the lengthscales define the shape of cp¨q, the cost
function goes to its maximum value more rapidly with small lengthscales. Therefore, higher cost is
associated to the same distance from the target state with lower lθ and lp. The lower the lengthscale
the more selective the cost function. The absolute value on θt is needed to allow different swing-up
solutions to both the equivalent target angles of the pole π and ´π. The selected lengthscales were
lθ “ 3 and lp “ 1.

The policy adopted is an RBF network policy with outputs limited by an hyperbolic tangent function,
properly scaled. We call this function squashed-RBF-network and it is defined as

πθpx̄tq “ umax tanh

˜

1

umax

nb
ÿ

i“1

wie
||ai´x̄t||

2
Σπ

¸

. (4)

parameters are θ “ tw, A,Σπu, where w “ rw1 . . . wnbs and A “ ta1 . . .anbu are, respectively,
the weights and the centers of the nb Gaussian basis functions, while Σπ determines their shapes; in
all experiments we assumed Σπ to be diagonal. umax is the maximum control action applicable. For
this experiment we choose nb “ 200 basis functions and umax “ 10 [N]. The exploration trajectory
is obtained by applying at each time step a random control action sampled from Up´umax, umaxq.

6.3 Comparison with state of the art algorithms

We tested PILCO[3], Black-DROPS[5] and MC-PILCO on the simulated cart-pole system.

0 1 2 3 4 5
trials

20

30

40

50

60

optimal swing-up

sub-optimal swing-up

PILCO
Black-DROPS
MC-PILCO

Figure 5: Median and confidence interval of the cu-
mulative cost cpilcop¨q per trial obtained with PILCO,
Black-DROPS and MC-PILCO.

The setup is equal to the one described in Ap-
pendix 6.2, with the only two difference that
here the samples are collected at 20 [Hz] and
the noise standard deviation is 10´2. In PILCO
and Black-DROPS, we considered their original
cost function,

cpilcopxtq “ 1´ exp

˜

´
1

2

ˆ

dt
0.25

˙2
¸

, (5)

where d2
t “ p2

t ` 2ptLsinpθtq ` 2L2p1 `
cospθtqq is the squared distance between the tip
of the pole and its position at the unstable equi-
librium point with pt “ 0 [m]. This last cost is
also adopted as a common metric to compare the
results obtained by the three algorithms. Results
of the cumulative cost are reported in Figure
5, observed success rates are shown in Table 1.
MC-PILCO achieved the best performance both
in transitory and at convergence, by trial 5, it
learned how to swing up the cart-pole with a
success rate of 100%. In each and every trial, MC-PILCO obtained cumulative costs with lower
median and less variability. On the other hand, the policy in PILCO showed poor convergence

7

properties with only 42% of success rate after all the 5 trials. Black-DROPS outperforms PILCO, but
it obtained worse results than MC-PILCO in each and every trial, with a success rate of only 86% at
trial 5.

6.4 Furuta Pendulum

The Furuta pendulum (FP) [10] is a popular benchmark system used in nonlinear control
and reinforcement learning. The system is composed of two revolute joints and three links.

Arm

Pendulum

Base

Figure 6: Furuta pendulum used in
the experiment while being controlled
in the upward equilibrium point by the
learned policy.

The first link, called the base link, is fixed and perpendicular to
the ground. The second link, called arm, rotates parallel to the
ground, while the rotation axis of the last link, the pendulum,
is parallel to the principal axis of the second link, see Figure 6.
The FP is an under-actuated system as only the first joint is
actuated. In particular, in the FP considered the horizontal
joint is actuated by a DC servomotor, and the two angles are
measured by optical encoders with 4096 [ppr]. The control
variable is the motor voltage. Let the state at time step t be
xt “ rθ

h
t ,

9θht , θ
v
t ,

9θvt s
T , where θht is the angle of the horizontal

joint and θvt the angle of the vertical joint attached to the pendu-
lum. The objective is to learn a controller able to swing-up the
pendulum and stabilize it in the upwards equilibrium (θvt “ ˘π
[rad]) with θht “ 0 [rad]. The trial length is 3 [s] with a sam-
pling frequency of 30 [Hz]. The cost function is defined as

cpxtq “ 1´exp

˜

´

ˆ

θht
2

˙2

´

ˆ

|θvt | ´ π

2

˙2
¸

`cbpxtq, (6)

with

cbpxtq “
1

1` exp
`

´10
`

´ 3
4π ´ θ

h
t

˘˘

`
1

1` exp
`

´10
`

θht ´
3
4π

˘˘ .

The first part of the function in (6) aims at driving the two
angles towards θht “ 0 and θvt “ ˘π, while cbpxtq penalizes solutions where θht ď ´ 3

4π

or θht ě 3
4π. We set those boundaries to avoid the risk of damaging the system if the hor-

izontal joint rotates too much. Offline estimates of velocities for the GP model have been
computed by means of central differences. For the online estimation, we used causal numeri-
cal differentiation: 9qt “ pqt ´ qt´1q{Ts, where Ts is the sampling time. Instead of xt, we
considered the extended state x̄t “ r 9θht ,

9θvt , sinpθ
h
t q, cospθ

h
t q, sinpθ

v
t q, cospθ

v
t qs

T in GP input.
The policy is a squashed-RBF-network with nb “ 200 basis functions that receives as input
z̄t “ rpθht ´ θht´1q{Ts, pθ

v
t ´ θvt´1q{Ts, sinpθ

h
t q, cospθ

h
t q, sinpθ

v
t q, cospθ

v
t qs

T . We used 400 par-
ticles to estimate the policy gradient from model predictions. The exploration trajectory has been
obtained using as input a sum of ten sine waves of random frequencies and same amplitudes. The
initial state distribution is assumed to be N pr0, 0, 0, 0sT , diagpr5 ¨ 10´3, 5 ¨ 10´3, 5 ¨ 10´3, 5 ¨ 10´3sq.
M “ 400 particles were used for gradient estimation.

6.5 Ball-and-Plate

The ball-and-plate system is composed of a square plate that can be tilted in two orthogonal directions
by means of two motors. On top of it, there is a camera to track the ball and measure its position on
the plate. Let pbxt , b

y
t q be the position of the center of the ball along X-axis and Y-axis, while θp1qt

and θp2qt are the angles of the two motors tilting the plate, at time t. So, the state of the system is
defined as xt “ rbxt , b

y
t ,

9bxt ,
9byt , θ

p1q
t , θ

p2q
t , 9θ

p1q
t , 9θ

p2q
t s

T . The drivers of the motors allow only position
control, and do not provide feedback about the motors angles. To keep track of the motor angles,
we defined the control actions as the difference between two consecutive reference values sent to

8

the motor controllers, and we limited the maximum input to a sufficiently small value, such that
the motor controllers are able to reach the target angle within the sampling time. Then, in first
approximation, the reference angles and the motor angles coincide, and we have up1qt “ θ

p1q
t`1 ´ θ

p1q
t

and up2qt “ θ
p2q
t`1 ´ θ

p2q
t . The objective of the experiment is to learn how to control the motor angles

in order to stabilize the ball around the center of the plate. Notice that the control task, with the given
definition of inputs, is particularly difficult because the policy must learn to act in advance, and not
only react to changes in the ball position.

The cost function is defined as

cpxtq “ 1´ exp p´gtpxtqq , with

gtpxtq “

ˆ

bxt
0.15

˙2

`

ˆ

byt
0.15

˙2

`

´

θ
p1q
t

¯2

`

´

θ
p2q
t

¯2

.

The trial length is 3 [s], with a sampling frequency of 30 [Hz]. Measurements provided by the
camera are very noisy, and cannot be used directly to estimate velocities from positions. We
used a Kalman smoother for the offline filtering of ball positions bxt , b

y
t and associated velocities

9bxt ,
9byt . In the control loop, instead, we used a Kalman filter [12] to estimate online the ball state

from noisy measures of positions. Concerning the model, we need to learn only two GPs pre-
dicting the evolution of the ball velocity because we directly control motor angles, hence, their
evolution is assumed deterministic. GP inputs, x̃t “ rx̄t, uts, include an extended version of
the state, x̄t “ rbxt , b

y
t ,

9bxt ,
9byt , sinpθ

p1q
t q, cospθ

p1q
t q, sinpθ

p2q
t q, cospθ

p2q
t q, pθ

p1q
t ´ θ

p1q
t´1q{Ts, pθ

p2q
t ´

θ
p2q
t´1q{Tss

T where angles have been replaced by their sines and cosines, and motor angular ve-
locities have been estimated with causal numerical differentiation (Ts is the sampling time).

Figure 7: Ball-and-plate system used
in the experiment.

The SE+Pp1q kernel (2) is used, where the linear ker-
nel acts only on a subset of the model inputs, x̃lint “

rsinpθ
p1q
t q, sinpθ

p2q
t q, cospθ

p1q
t q, cospθ

p2q
t q, uts. We consid-

ered M “ 400 particles for policy gradient estimation.
The policy is a multi-output squashed-RBF-network, with
nb “ 400 basis functions, that receives as inputs the esti-
mates of pbxt , b

y
t ,

9bxt ,
9byt , θ

p1q
t , θ

p1q
t´1, θ

p2q
t , θ

p2q
t´1q computed with

the Kalman filter; maximum angle displacement is umax “ 4
[deg] for both motors. Initial exploration is given by two differ-
ent trials, in which the control signals are two triangular waves
perturbed by white noise. Mostly during exploration and initial
trials, the ball might touch the borders of the plate. In those
cases, we kept data up to the collision instant. A peculiarity
of this experiment in comparison to the others seen before is
a wide range of initial conditions. In fact, the ball could be
positioned anywhere on the plate’s surface, and the policy must
control it to the center. The initial distribution of bx0 and by0
is a uniform Up´0.15, 0.15q, which covers almost the entire
surface (the plate is a square with sides of about 0.20 [m]). For
the other state components, θp1qt and θp2qt , we assumed tighter
initial distributions Up´10´6, 10´6q.

9

	Introduction
	Problem Setting
	Method
	Model Learning
	Policy optimization

	Experiments
	Conclusions
	Appendix
	Kernel functions
	Simulated Cart-pole
	Comparison with state of the art algorithms
	Furuta Pendulum
	Ball-and-Plate

