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Abstract

One of the main issues in Learning from Demonstration is the erroneous behavior
of an agent when facing out-of-distribution situations. In this work, we tackle this
problem by introducing a novel active learning and control algorithm, SAFARI.
During training, it allows an agent to request further human demonstrations when
these out-of-distributions are met. At deployment, it combines model-free acting
using behavioural cloning with model-based planning to reduce state-distribution
shift, using future state reconstruction as a test for state familiarity. We empirically
demonstrate how this method increases the performance on a set of manipulation
tasks by a substantial margin in both simulated and real robotics scenarios.

1 Introduction

To teach a robot a novel task, one promising avenue of research is Learning from Demonstration
(LfD) (Osa et al. (2018); Hussein et al. (2017); Ghasemipour et al. (2020)), and in particular Be-
havioural Cloning (BC). One of the main drawbacks of this method is caused by the erroneous
behavior of policy networks outside the training distribution (Pomerleau (1989); Ghasemipour et al.
(2020)). This may be caused by both a poor state-space visitation in the demonstrations and test
time drifting, caused by accumulated errors and noise.

In this work we propose a novel active imitation learning and control method that tackles the afore-
mentioned problems: SAFARI (SAFe and Active Robot Imitation Learning with Imagination).
SAFARI is a method for imitation learning and control which allows the robot to actively ask for
more informative demonstrations at training time, actively minimizing distributional shift at test
time, and predicting test time failures to improve safety. As we show in this work, these methods
all contribute to tackle the aforementioned issues from three different perspectives, resulting in a
substantial improvement in performance and safety.

Specifically, SAFARI uses an interplay between a policy network, a learned dynamics network
(also referred as world model in this work), and an epistemic uncertainty network. The policy
network is trained to emulate the expert’s behavior with Behavioural Cloning, while the dynamics
network is trained to predict future states (Nagabandi et al. (2018)), enabling planning alongside
model-free policy acting, and the uncertainty network Di Palo and Valpola (2018); Boney et al.
(2019) is trained to estimate epistemic uncertainty/out-of-distribution states.

With ”uncertainty” we will always refer to epistemic uncertainty: dealing with aleatoric uncertainty
is outside the scope of this work.

We test our method both on simulated and real robotics environments, obtaining substantial im-
provements over baselines in both scenarios.

NeurIPS 2020 3rd Robot Learning Workshop: Grounding Machine Learning Development in the Real World.



Figure 1: An overview of our training and control method, SAFARI.

2 Related Work

Learning from Demonstration with deep neural networks has shown impressive results in recent
years in robotics. (Argall et al. (2009); Zhang et al. (2018); James et al. (2018); Gupta et al. (2019)).
Active Learning (Hanczor (2018); Argall et al. (2009)) deals with the design of methods able to
actively ask an expert for labels on unseen data. Ross et al. (2011) proposed DAgger, with several
variants proposed over the years (Cronrath et al.; Hanczor (2018)), but these methods cannot be
applied efficiently to real-world systems. We extend Di Palo and Johns (2019) with a novel control
method, and testing the algorithm on a real robot. Filos et al. (2020) is the closest work to our
method, but applied to a very different scenario: simulated autonomous vehicles. While proposing a
similar approach, they don’t use a policy network and don’t learn a dynamics function, but compute
a series of desired future states and assume the existence of an inverse dynamical model which can
then infer actions.

3 Method

3.1 Active Imitation Learning

We propose to have an iterative, interactive approach to gathering demonstrations. Instead of re-
ceiving all the demonstration beforehand, the agent can request a demonstration by interacting with
its environment and stopping when its uncertainty surpasses a certain threshold. The uncertainty
estimation method is described in section 3.3. Our experiments, detailed in Section 4, demonstrate
how we can train a better policy network using active demonstrations than receiving the same num-
ber of demonstrations passively beforehand.

3.2 Networks Models and Architectures

Inspired by previous works on Learning from Demonstration Lynch et al. (2019); Levine et al.
(2016); Finn et al. (2016); Zhang et al. (2018), we use a feed-forward neural network fθ to
parametrize our policy, taking as input the current observation, and computing as output the action.
The policy network is trained with Behavioural Cloning.

To model the uncertainty of the agent, we use Denoising Autoencoders (DAE), gφ (Vincent et al.
(2010); Arponen et al. (2017), as described in Boney et al. (2019). Different kinds of architectures
have been tested, more information can be found in the Appendix.

As a learned dynamics model, we use a feed-forward network dγ that takes as input the current state
and action and predicts the one step difference ∆x̂t+1 such that x̂t+1 = xt + ∆x̂t+1 (Nagabandi
et al. (2018)). This network is trained using the same demonstration trajectories collected by the
expert.

All the networks are trained together on the same data (although used in different way) as described
in Section 4 and Algorithm 1 in the Appendix.

3.3 Uncertainty Estimation with Imagined Rollouts

To compute the uncertainty on a particular state, we use an interplay of the three previously men-
tioned networks, as we show in Figure 3 (right, appendix).
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From a state st, we use the Policy Network and the Dynamics Network to predict the future states
that the agent will encounter following its current policy, st+1, ..., st+T . We use the DAE gφ to
compute the aforementioned error on each of those states, and then average the result. For brevity,
we will refer to the uncertainty of a state as ut = u(st, fθ, dγ , gφ), where st is the current state
and fθ, dγ , gφ are policy, dynamics and uncertainty networks, that are used as shown in Figure 3
(right, appendix). This value is used as a proxy for the epistemic uncertainty of the policy on the
current state. We show empirically in Section 5.1 (appendix) how this method can accurately predict
failures several steps before they happen, surpassing even a supervised model, allowing to collect
informative demonstrations at training time and adding safety at test time.

3.4 Online Planning for State Shift Minimization

Here we demonstrate how an interplay of the networks we introduced in this work can be used, in
addition to obtaining a more efficient active imitation learning method, to reduce state-distribution
shifting at test time. (Ross et al. (2011); Pomerleau (1989); Laskey et al. (2017); Ghasemipour
et al. (2020)) At test time the agent plans for a series of actions (a0, a1, ..., aT ) that minimize the
uncertainty of the predicted future state visited by applying these actions, ŝt+T+1, similarly to Boney
et al. (2019); Di Palo and Valpola (2018), that applied uncertainty regularization to Model-Based
Reinforcement Learning. In our work, we decompose the learning of a model and the learning of
a policy, tackling the problem of imitation learning with no explicit reward. The uncertainty of this
state is computed as described in Section 3.3. Hence, at each time step the robot computes its action
as

at = fφ(st) + β · ap,0 where ap,0:T = argmina u(ŝt+T+1) subject to ŝt+1 = dγ(st, at)

where ap is a trajectory of actions that minimizes the uncertainty of the final predicted state, T is
the length of the plan, and ap,0 is the first action of such trajectory, following the Model Predictive
Control framework.

4 Experiments

In this section we describe the experiments we designed to benchmark the performance of SAFARI
on several manipulation tasks, both simulated and on a real robot. 1:

Task /
Method AL-PL AL-ROP AL-

DART
1-Cube Pick
and Place 88%-12% 80%-20% 80%-20%

2-Cubes
Stack 83%-17% 73%-27% 67%-33%

Nut and Peg 75%-25% 63%-37% 71%-29%

Table 1: Experimental results of Active Learning (AL)
against several baselines as described in Section 4.1.1. We
show the percentage of experiments, defined as a round of
data collection, training and testing with a different random
seed (Section 4.1), on which one method successfully com-
pletes more test instances of the task than the other.

Further discussion, ablation studies
and a more detailed list of hyperpa-
rameters used in all the experiments
can be found in the Appendix, where
we also demonstrate the ability of our
method to predict failure in an unsu-
pervised way, and the impact of the
dynamics model in reducing the num-
ber of steps needed.

4.1 Active Learning
Performance at Test Time

We designed the following experi-
ments to compare the final perfor-
mance of the agent using Passive
Learning, Active Learning, and two
other baselines, reducing all possible
influences of external factors.

N demonstrations are used to train a policy network, consisting of our Passive Learning baseline.
For Active Learning, we select the initial (1− γ)N (where 0 < γ < 1) demonstrations, used as the
initialization demonstrations, then collect additional γN demonstrations using our iterative method,
described in section 3.1. We suppose that both (1 − γ)N and γN are integers. We then test the
policy networks trained on these two sets of demonstrations on a common test set.

1Detailed hyperparameters, code and videos: https://www.robot-learning.uk/safari
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We repeat the experiments, including data collection, training, and testing, on a minimum of 7 seeds.
In Table 1 we show on what percentage of the seeds one method completed more test tasks than the
other, while showing the normalized sum of the total solved test cases in Figure 2, right (appendix).

4.1.1 Simulated Environments - Cubes Manipulation and Nut and Peg Insertion

We start by describing our results on three simulated tasks. The three manipulation tasks are 1
Cube pick-and-place, 2 Cubes stacking, and a Nut and Peg insertion task (Figure 3, left, appendix).
We compare our proposed active learning method against several baselines: Passive Learning (PL),
randomly stopping during execution to ask for a demonstration (Rand. On Policy, ROP), and DART
Laskey et al. (2017), an effective algorithm for robot imitation learning that tackles distribution
shift. The results of Table 1 show how our method outperforms all the baselines considering several
independent runs.

4.1.2 Real Sawyer Environment

Active/Total
Demos

0/50
(PL) 25/50 40/50

Sawyer - Obj.
Manipulation
w/ Vision

15/25 18/25 20/25

Table 2: Successfully completed tasks over the
same test set of 25 tasks, varying the amount of
active demonstrations. (PL being Passive Learn-
ing).

To test the ability of our method to scale to real
world scenarios, we designed a manipulation
task using the Sawyer robot. Additional details
can be found in the Appendix.

In these experiments, we provided a total of
50 demonstrations to the robot. For the active
learning approach, we test to different ratios of
active demonstrations, γ = 0.5 and γ = 0.8.
As shown in Table 2, the active learning ap-
proach beats the passive learning approach in
this environment as well. We also notice how
a larger ratio of active demonstrations achieves
the best results, as also happened in the experiments in Figure 2 (left, appendix). This validates
our hypothesis that demonstrations collected using our method are generally more informative and
useful for the policy network to generalize.

4.2 Test Performance of Hybrid Model-free and Online Planning

Task /
Method

SAFARI
(ours) BC

1-Cube Pick
and Place 8.8 ± 2.35 7.6 ± 2.35

2-Cubes
Stack 5.9 ± 4.0 3.4 ± 2.6

Table 3: Comparison of our proposed control
method (Section 3.4) and behavioural cloning.
Average number of solved test instances and stan-
dard deviation computed on 10 different seeds of
50 test cases each.

In this section we measure the influence of the
planning method proposed in section 3.4 (Fig-
ure 1 - Figure 4, appendix) on the performance
of the robot at test time.

We collected a series of expert demonstrations
and trained the models described in this work,
fθ, gφ, dγ . We compare the performance of nor-
mal behavioural cloning using the policy net-
work actions at test time, at = fθ(st) against
our hybrid acting approach (Section 3.4). As
shown in Table 3, our proposed hybrid ap-
proach outperforms behavioural cloning on
different environments.

5 Conclusion

In this work we introduced SAFARI, a method that tackles some of the principal issues of Learning
from Demonstrations in robotic scenarios. We demonstrated how to tackle these problems using a
common, versatile approach, obtained with a combination of a policy network, a dynamics network
and an uncertainty network.
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Appendix

Algorithms

In this section of the Appendix we describe in more detail the proposed algorithms. Algorithm 1
presents the steps taken in the Active Learning procedure. We define unc rollout as the function
that computes the uncertainty using the Dynamics Network for predicting future states and their
predicted uncertainty, describing it in Algorithm 2.

Algorithm 1 Active Learning with Uncertainty Networks - Autonomous Variant
Initialize demonstrations set D = {}, Policy, Dynamics and Uncertainty networks fθ, dγ , gφ,
total desired demos N , active learning demos ratio γ, steps-to-retrain µ.
# Start collecting a fraction of the total desired demos in passive learning to train the networks.
for i in N(1− γ) do

Sample task instance.
Collect demo in the form di = (s0, a0, ..., sT , aT ).
D ←− D ∪ di

end for
Train fθ, dγ , gφ on D.
# Collect demos with Active Learning. Retrain every µ steps, stop at N total demos.
for i in γN/µ do

for j in µ do
Sample task instance.
while Task is not finished/failed do

Compute uncertainty ut = unc rollout(st, fθ, dγ , gφ, steps), get action at = fθ(st).
if ut > uthr then

Stop execution, collect expert demo from st as di = st, at, ..., sT , aT .
D ←− D ∪ di
Break While.

end if
Execute action at, obtain observation st+1.

end while
end for
Train fθ, dγ , gφ on D.

end for

Algorithm 2 Function unc rollout()
INPUTS: current state si, Policy Network fθ, Dynamics Network dγ , Uncertainty Network gφ,
number of future steps steps.
Initialize utot ←− 0.
for i in steps do

Predict uncertainty and add to total. utot ←− utot + gφ(si)
Predict action ai ←− fθ(si).
Predict next state si+1 ←− si + dγ(si, ai)
si ←− si+1

end for
Return utot/steps

Hyperparameters and details of experiments

In this section we describe the hyperparameters and architectures we used in our experiments. We
used the OpenAI Gym Fetch environment (Brockman et al. (2016)) for our experiments, that was
modified to add the 2 Cubes scenario, plus a simulated Sawyer Nut and Peg scenario from Yu
et al. (2019). The 1 Cube scenario has an observation space of 31, describing positions, velocities
and orientations of end-effector and objects and desired goal position, and an action space of 4,
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Figure 2: Left: How test-time performance varies as we modify the ratio of Active Learning ex-
amples over Passive Learning ones, γ. The plot represents the average number of successes over
13 different independent runs. Center: How failure prediction F1 score and steps needed to pre-
dict failures change when modifying the number of look ahead steps in imagined rollouts. Right:
Normalized number of test instances solved by each method, averaged over 7 seeds.

Figure 3: Left: The simulated and real environments used in this work. Right: This diagram depicts
the method we designed to estimate the agent’s uncertainty described in Section 3.3. At each time
step, the agent predicts the future visited states by running its policy network using its internal world
model. It then computes the epistemic uncertainty of these imagined state using its uncertainty
model, averaging the results over all the imagined steps.

describing Cartesian velocities and gripper position. The 2 Cubes scenario has an observation space
of 49 and same action space. The Nut and Peg scenario has an observation space of 9, describing
positions of end-effector, object and goal, and an action space of 4, as with the previous scenarios.

For our real world Sawyer experiments, we designed a cube pushing task. The inputs are the vision
stream given by a fixed camera, which is resized to 32x32, and the end-effector position given by
the kinematics of the robot. We use an autoencoder to reduce the dimensionality of the input. We
gathered around 10 minutes of random movements and interaction with the environment to quickly
collect an image dataset. We then trained the autoencoder on this dataset and use it, frozen, in all our
experiments. The encoder transforms the input images to vectors of size 16. Figure 5 (Appendix)
describes the process of encoding the input images, concatenating the embedded vector with the
state of the robot, and giving it as input to our networks.

5.1 Unsupervised Failure Prediction

In this section, we experimentally demonstrate the ability of our method to predict failures, while
also minimizing the steps needed. We first compared our uncertainty network, trained in an unsuper-
vised way only on expert demonstrations, against a supervised failure predictor baseline, trained
on an ad-hoc dataset of successful and unsuccessful trajectories, to test the prediction abilities of
our method. Then, we measured the number of steps needed to predict a failure, and the accuracy
of these predictions, when changing the number of steps predicted with the imagination rollout. We
demonstrate how our unsupervised method is able to surpass the supervised method, while never
seeing an actual failure trajectory in the dataset. Furthermore, we show how our method is able to
reduce considerably the number of steps needed to predict a failure by predicting the future, hence
improving safety in robotics scenarios.
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Figure 4: In this figure we visually describe the hybrid behavior of the robot that we propose. After
computing the output of the policy network, the agent plans for a series of actions that will minimize
state distribution shift as described in Section 3.4.

Figure 5: Embedding of the robot’s visual input and concatenation with internal states, as described
in Section 4.1.2.

For the first experiments, we used the same scenarios described in section 4.1.1. For the first exper-
iments, we trained our networks on a set of 70 expert demonstrations. We then gathered a set of 70
trajectories by running the policy, labelling them as ”successes” or ”failures”. We trained a binary
classification neural network using this dataset, the failure predictor, to classify states st as success
or failures, predicting the outcome of the current trajectory. We then gathered a test set of M test
trajectories, run the robot’s policy on those, and used both our uncertainty model and the failure
predictor to measure the probability of failure from the current state at each step. When one of
these outputs surpasses a threshold, the trajectory is labelled as a failure according to the respective
model. We then let the agent complete the trajectory and labelled it as actual successes or failures.
Finally, we measured the precision, recall and F1 scores of the two methods in predicting actual fail-
ures. Our method achieves 0.71 F1 score averaged on 5 runs, while the supervised failure predictor
achieves 0.66 F1 score on the same test set. Hence, our unsupervised method actually beats
the supervised baseline, while being trained only on expert’s demonstrations to predict epistemic
uncertainty.

For the second experiments, we trained our networks on a set of expert demonstrations, and we used
the technique described in Section 3.3 to predict future states and anticipate possible failures. We
measured the F1 score at predicting failures of our method, along with the number of steps needed,
when changing the number of future states predicted. We empirically demonstrate how the future
prediction allows our method to predict failure in fewer steps without degrading performance.
As show in Figure 2 (center, appendix), the F1 score is roughly unchanged from 0 to 10 steps of
future states prediction, while the steps needed to actually predict failures are much fewer, hence
strongly improving safety.

In our experiments, we also compared the Denoising Autoencoder with Dropout-based Bayesian ap-
proximation Gal and Ghahramani (2016) and Random Network Distillation Burda et al. (2018), and
the Denoising Autoencoders gave the best results. We plan to further explore additional architectures
in future work.
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Table 4: Architectures of Policy Network (PN), Denoising Autoencoder (DAE) and Dynamics Net-
work (DN). We describe the hidden nodes’ sizes (HS), number of hidden layers (HL).

Task name PN HS PN HL DAE HS DAE HL DN HS DN HL
1 Cube Pick-and-Place 128 2 8 2 128 4
2 Cubes Stacking 128 2 32 2 128 4
Nut and Peg 128 2 8 2 128 4

Table 5: Hyperparameters of Algorithm 1 on the various experiments reported in Table 1.

Experiment name N demos γ µ uthr
1 Cube Aut. AL-PL 60 0.5 5 1.5 error on train set
2 Cubes Aut. AL-PL 300 0.5 25 1.1 error on train set
Nut and Peg AL-PL 40 0.75 5 3 error on train set

6 Robustness to changing the uncertainty threshold

In this section, we show the results of changing the uncertainty threshold uthr that defines when the
agent decides to stop to either ask for a demonstration or predict a failure. A lower value means that
a lower uncertainty given by the uncertainty network is enough to stop the robot, and vice versa.
We show that our method is robust to changes in this value. We show in Table 5 how the results are
consistently well above the Passive Learning baselines and do not change much when modifying the
uthr hyperparameters, hence showing the robustness of our method.

10



Test performance with dif-
ferent values of uthr dur-
ing training.

Passive
Learning uthr =4 uthr =5 uthr =6 uthr =7 uthr =8

Number of test cases solved 670 826 811 865 828 802
Table 6: Experimental results of different values of uthr in the 1 Cube scenario, to test the ro-
bustness of our method to changing the threshold for epistemic uncertainty. As we show, results
consistently surpass the Passive Learning baselines, while not changing much when modifying the
hyperparameter. Results summed over 4 random seeds.
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