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Abstract
In most real world scenarios, a policy trained by reinforcement learning in one en-
vironment needs to be deployed in another, potentially quite different environment.
However, generalization across different environments is known to be hard. A
natural solution would be to keep training after deployment in the new environment,
but this cannot be done if the new environment offers no reward signal. Our work
explores the use of self-supervision to allow the policy to continue training after de-
ployment without using any rewards. While previous methods explicitly anticipate
changes in the new environment, we assume no prior knowledge of those changes
yet still obtain significant improvements. Empirical evaluations are performed on
diverse simulation environments from DeepMind Control suite and ViZDoom, as
well as real robotic manipulation tasks in continuously changing environments,
taking observations from an uncalibrated camera.1

1 Introduction
Deep reinforcement learning (RL) has achieved considerable success when combined with convolu-
tional neural networks for deriving actions from image pixels [Mnih et al., 2013, Levine et al., 2016,
Nair et al., 2018, Yan et al., 2020, Andrychowicz et al., 2020]. However, one significant challenge
for real-world deployment of vision-based RL remains: a policy trained in one environment might
not generalize to other new environments not seen during training. Already hard for RL alone, the
challenge is exacerbated when a policy faces high-dimensional visual inputs.

A well explored class of solutions is to learn robust policies that are simply invariant to changes in
the environment [Rajeswaran et al., 2016, Tobin et al., 2017, Sadeghi and Levine, 2016, Pinto et al.,
2017b, Lee et al., 2019]. For example, domain randomization [Tobin et al., 2017, Peng et al., 2018,
Pinto et al., 2017a, Yang et al., 2019] applies data augmentation in a simulated environment to train a
single robust policy, with the hope that the augmented environment covers enough factors of variation
in the test environment. However, this hope may be difficult to realize when the test environment
is truly unknown. With too much randomization, training a policy that can simultaneously fit
numerous augmented environments requires much larger model and sample complexity. With too
little randomization, the actual changes in the test environment might not be covered, and domain
randomization may do more harm than good since the randomized factors are now irrelevant. Both
phenomena have been observed in our experiments. In all cases, this class of solutions requires
human experts to anticipate the changes before the test environment is seen. This cannot scale as
more test environments are added with more diverse changes.

Instead of learning a robust policy invariant to all possible environmental changes, we argue that it is
better for a policy to keep learning during deployment and adapt to its actual new environment. A

1Project page with code: https://nicklashansen.github.io/PAD/
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Figure 1. Left: Training before deployment. Observations are sampled from a replay buffer for
off-policy methods and are collected during roll-outs for on-policy methods. We optimize the RL and
self-supervised objectives jointly. Right: Policy adaptation during deployment. Observations are
collected from the test environment online, and we optimize only the self-supervised objective.

naive way to implement this in RL is to fine-tune the policy in the new environment using rewards as
supervision [Rusu et al., 2016]. However, while it is relatively easy to craft a dense reward function
during training [Gu et al., 2017, Pinto and Gupta, 2016], during deployment it is often impractical.

In this paper, we tackle an alternative problem setting in vision-based RL: adapting a pre-trained
policy to an unknown environment without any reward. We do this by introducing self-supervision
to obtain “free” training signal during deployment. Standard self-supervised learning employs
auxiliary tasks designed to automatically create training labels using only the input data. Inspired by
this, our policy is jointly trained with two objectives: a standard RL objective and, additionally, a
self-supervised objective applied on an intermediate representation of the policy network. During
training, both objectives are active, maximizing expected reward and simultaneously constraining
the intermediate representation through self-supervision. During testing / deployment, only the
self-supervised objective (on the raw observational data) remains active, forcing the intermediate
representation to adapt to the new environment.

2 Method

We now describe our proposed Policy Adaptation during Deployment (PAD) approach, which can be
implemented on top of any policy network and standard RL algorithm, both on-policy and off-policy.

Network architecture. We design the network architecture to allow the policy and the self-supervised
prediction to share features. For the collection of parameters θ of a given policy network π, we split it
sequentially into θ = (θe, θa), where θe collects the parameters of the feature extractor, and θa is the
head that outputs a distribution over actions. We define networks πe with parameters θe and πa with
parameters θa such that π(s; θ) = πa(πe(s)), where s represents an image observation. The goal of
our method is to update πe at test-time using gradients from a self-supervised task, such that πe (and
consequently πθ) can generalize. Let πs with parameters θs be the self-supervised prediction head
and its collection of parameters, and the input to πs be the output of πe (as illustrated in Figure 1). In
this work, the self-supervised task is inverse dynamics prediction for continuous control, and rotation
prediction for navigation. We ablate the choice of self-supervised task in appendix E.

Inverse dynamics prediction and rotation prediction. At each time step, we always observe a
transition sequence in the form of (st,at, st+1), during both training and testing. Naturally, self-
supervision can be derived from taking parts of the sequence and predicting the rest. An inverse
dynamics model takes the states before and after transition, and predicts the action in between. In this
work, the inverse dynamics model πs operates on the feature space extracted by πe. We can write the
inverse dynamics prediction objective formally as

L(θs, θe) = `
(
at, πs (πe(st), πe(st+1))

)
. (1)

where ` is the mean squared error for continuous actions and cross-entropy for discrete actions. As an
alternative self-supervised task, we use rotation prediction [Gidaris et al., 2018]. We rotate an image
by one of 0, 90, 180 and 270 degrees as input to the network, and cast this as a four-way classification
problem to determine which one of these four ways the image has been rotated. This task is shown
to be effective for learning representations for object configuration and scene structure, which is
beneficial for visual recognition [Hendrycks et al., 2019, Doersch and Zisserman, 2017].
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Table 1. Cumulative reward in DMC environments with randomized colors, mean and std. dev. for
10 seeds. Best method on each task is in bold and brown compares +IDM with and without PAD.

10x episode length
Random colors SAC +DR +IDM +IDM (PAD) +IDM +IDM (PAD)

Walker, walk 414±74 594±104 406±29 468±47 3830±547 5505±592

Walker, stand 719±74 715±96 743±37 797±46 7832±209 8566±121

Cartpole, swingup 592±50 647±48 585±73 630±63 6528±539 7093±592

Cartpole, balance 857±60 867±37 835±40 848±29 7746±526 7670±293

Ball in cup, catch 411±183 470±252 471±75 563±50 – –
Finger, spin 626±163 465±314 757±62 803±72 7249±642 7496±655

Finger, turn_easy 270±43 167±26 283±51 304±46 – –
Cheetah, run 154±41 145±29 121±38 159±28 1117±530 1208±487

Reacher, easy 163±45 105±37 201±32 214±44 1788±441 2152±506

Training and testing. Before deployment of the policy, we optimize both the RL task and the
self-supervised auxiliary task minθa,θs,θe J(θa, θe) + αL(θs, θe), where α > 0 is a trade-off hyper-
parameter. During deployment, we cannot optimize J anymore since the reward is unavailable, but
we can still optimize L to update both θs and θe. As we obtain new images from the stream of visual
inputs in the environment, θ keeps being updated until the episode ends. This corresponds to, for
each iteration t = 1...T :

st ∼ p(st|at−1, st−1) (2)
θs(t) = θs(t− 1)−∇θsL(st; θs(t− 1), θe(t− 1)) (3)
θe(t) = θe(t− 1)−∇θeL(st; θs(t− 1), θe(t− 1)) (4)

at = π(st; θ(t)) with θ(t) = (θe(t), θa), (5)

where θs(0) = θs, θe(0) = θe, s0 is the initial condition given by the environment, a0 = πθ(s0), p is
the unknown environment transition, and L is the self-supervised objective as previously introduced.

3 Experiments
In this work, we investigate how well an agent trained in one environment (denoted the training
environment) generalizes to unseen, visually diverse test environments, with only access to image
observations during training and evaluation. During deployment, agents have no access to reward
signals and are expected to generalize without trials nor prior knowledge about the test environments.
We evaluate our method (PAD) and baselines extensively on a variety of tasks from DeepMind
Control (DMC) suite [Tassa et al., 2018], CRLMaze [Lomonaco et al., 2019], as well as robotic
manipulation tasks on a real robot, operating solely from an uncalibrated camera.

Network details. For DMC and robotic manipulation tasks we implement PAD on top of Soft Actor-
Critic (SAC) [Haarnoja et al., 2018], and adopt both network architecture and hyper-parameters from
Yarats et al. [2019] with minor modifications. For CRLMaze, we use Advantage Actor-Critic (A2C)
[Mnih et al., 2016] as base algorithm and apply the same architecture as for the other experiments.
Observations are colored frames of size 100× 100. See appendix H for details.

Baselines. We compare PAD to the following baselines: (i) base algorithm with no changes
(SAC/A2C); (ii) base algorithm trained with domain randomization (+DR); and (iii) joint train-
ing with auxiliary task (+IDM/+Rot for IDM and rotation prediction, respectively), but without PAD.
DR uses less randomization than the test environments as we find it to not converge otherwise.

3.1 DeepMind Control

DeepMind Control (DMC) [Tassa et al., 2018] is a collection of continuous control tasks where
agents only observe raw pixels. We experiment with 9 tasks from DMC and measure generalization
to environments with randomized colors, as robustness to subtle changes such as color is essential
to real-world deployment of RL policies. We implement PAD on top of SAC and use an Inverse
Dynamics Model (IDM) for self-supervision, as we find that learning a model of the motors works
well for motor control. Results are shown in Table 1. We find PAD to improve generalization in
all tasks considered, outperforming SAC trained with domain randomization in 6 out of 9 tasks. To
examine the long-term stability of PAD, we further evaluate on 10x episode lengths and summarize
the results in the last two columns of Table 1 (goal-oriented tasks excluded). While we do not
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(a) Simulation. (b) Default transfer. (c) Table cloth. (d) Disco lights.

Figure 2. Samples from the push robotic manipulation task. The task is to push the yellow cube to
the location of the red disc. Agents are trained in setting (a) and evaluated in settings (b-d).

explicitly prevent the embedding from drifting away from the RL task, we find empirically that PAD
does not degrade the performance of the policy, even over long horizons, and when PAD does not
improve, we find it to hurt minimally. We conjecture this is because we are not learning a new task,
but simply continue to optimize the same (self-supervised) objective as during joint training, where
both two tasks are compatible.

3.2 CRLMaze

Table 2. Top: Cumulative reward of PAD and baselines in
CRLMaze environments, mean and std. error of 10 seeds.
Bottom: Success rate of PAD and baselines deployed on a
real robotic arm. Best method on each task is in bold.

CRLMaze A2C +DR +Rot +Rot (PAD)

Walls −380±145 −260±137 −206±166 −74±116

Floor −320±167 −438±59 −294±123 −209±94

Ceiling −171±175 −400±74 128±196 281±83

Lights −30±213 −310±106 −84±53 312±104

Real robot SAC +DR +IDM +IDM (PAD)

Reach (default) 100% 100% 100% 100%
Reach (cloth) 48% 80% 56% 80%
Reach (disco) 72% 76% 88% 92%

Push (default) 88% 88% 92% 100%
Push (cloth) 60% 64% 64% 88%
Push (disco) 60% 68% 72% 84%

CRLMaze [Lomonaco et al., 2019] is
a 3D navigation task for ViZDoom
[Wydmuch et al., 2018]. We im-
plement PAD on top of A2C [Mnih
et al., 2016] and use rotation pre-
diction as self-supervised task. Re-
sults are shown in Table 2. PAD im-
proves generalization in all consid-
ered test environments, outperforming
both A2C and domain randomization
by a large margin. Domain random-
ization performs consistently across
all environments but is less successful
overall. We ablate the choice of self-
supervision in appendix E and find
that rotation prediction is more suit-
able for tasks that require scene under-
standing, whereas IDM is useful for tasks that require motor control. We leave it to future work to
automate the process of selecting appropriate auxiliary tasks.

3.3 Robotic manipulation tasks

We deploy our method and baselines on a real Kinova Gen3 robot, and evaluate on two manipulation
tasks: (i) reach, a task in which the robot reaches for a goal marked by a red disc; and (ii) push, a task
in which the robot pushes a cube to the location of the red disc. Agents operate purely from pixel
observations with no access to state information. During deployment, we make no effort to calibrate
camera, lighting, or dimensions, and policies are expected to generalize with no prior knowledge of
the test environment. Samples from the push task are shown in Figure 2, and samples from reach are
shown in appendix G. We implement PAD on top of SAC [Haarnoja et al., 2018] and use an IDM
for self-supervision. Agents are trained in simulation with dense rewards and randomized initial
configurations of arm, goal, and box, and we measure generalization to novel environments in the
real world.

We summarize the results in Table 2. While all methods transfer successfully to reach (default),
we observe PAD to improve generalization in all settings in which the baselines show sub-optimal
performance. We find PAD to be especially powerful for the push task that involves dynamics,
improving by as much as 24% in push (cloth), which suggests that PAD can be more suitable in
challenging tasks like push in unseen and changing environments.
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A Samples from DeepMind Control

We evaluate our method (PAD) and baselines extensively on continuous control tasks from DeepMind
Control (DMC) suite [Tassa et al., 2018] as well as the CRLMaze [Lomonaco et al., 2019] navigation
task, and experiment with both stationary (colors, objects, textures, lighting) and non-stationary
(videos) environment changes. Samples from both DMC and CRLMaze are shown in Figure 3.

Figure 3. Left: Training environments of DMC (top) and CRLMaze (bottom). Right: Test environ-
ments of DMC (top) and CRLMaze (bottom). Changes to DMC include: randomized colors, video
backgrounds, and distracting objects. Changes to CRLMaze include textures and lighting.

B Generalization to non-stationary changes and scene contents

Table 3. Cumulative reward in test environments with video
backgrounds (top) and distracting objects (bottom), mean
and std. dev. for 10 seeds. Best method on each task is in
bold and brown compares SAC+IDM with and without PAD.

Video backgrounds SAC +DR +IDM +IDM (PAD)

Walker, walk 616±80 655±55 694±85 717±79

Walker, stand 899±53 869±60 902±51 935±20

Cartpole, swingup 375±90 485±67 487±90 521±76

Cartpole, balance 693±109 766±92 691±76 687±58

Ball in cup, catch 393±175 271±189 362±69 436±55

Finger, spin 447±102 338±207 605±61 691±80

Finger, turn_easy 355±108 223±91 355±110 362±101

Cheetah, run 194±30 150±34 164±42 206±34

Distracting objects SAC +DR +IDM +IDM (PAD)

Cartpole, swingup 815±60 809±24 776±58 771±64

Cartpole, balance 969±20 938±35 964±26 960±29

Ball in cup, catch 177±111 331±189 482±128 545±173

Finger, spin 652±184 564±288 836±62 867±72

Finger, turn_easy 302±68 165±12 326±101 347±48

To investigate whether PAD can adapt
in non-stationary environments, we
evaluate generalization to diverse
video backgrounds (refer to Figure 3).
We find PAD to outperform all base-
lines on 7 out of 8 tasks, as shown
in Table 3, by as much as 104%
over domain randomization on Fin-
ger, spin. Domain randomization gen-
eralizes comparably worse to videos,
which we conjecture is not because
the environments are non-stationary,
but rather because the image statistics
of videos are not covered by its train-
ing domain of randomized colors. In
fact, domain randomization is outper-
formed by the vanilla SAC in most
tasks with video backgrounds, which
is in line with the findings of Packer
et al. [2018]. We further hypothesize
that: (i) an agent trained with an IDM
is comparably less distracted by scene content since objects uncorrelated to actions yield no predictive
power; and (ii) that PAD can adapt to unexpected objects in the scene. We test these hypotheses by
measuring robustness to colored shapes at a variety of positions in both the foreground and back-
ground of the scene (no physical interaction). Results are summarized in Table 3. PAD outperforms
all baselines in 3 out of 5 tasks, with a relative improvement of 208% over SAC on Ball in cup,
catch. In the two cartpole tasks in which PAD does not improve, all methods are already relatively
unaffected by the distractors.
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C Performance on the training environment

Historically, agents have commonly been trained and evaluated in the same environment when
benchmarking RL algorithms exclusively in simulation. Although such an evaluation procedure does
not consider generalization, it is still a useful metric for comparison of sample efficiency and stability
of algorithms. For completeness, we also evaluate our method and baselines in this setting on both
DMC and CRLMaze. DMC results are reported in Table 4 and results on the CRLMaze environment
are shown in Table 5. In this setting, we also compare to an additional baseline on DMC: a blind
SAC agent that operates purely on its previous actions. The performance of a blind agent indicates
to which degree a given task benefits from visual information. We find that, while PAD improves
generalization to novel environments, performance is virtually unchanged when evaluated on the
same environment as in training. We conjecture that this is because the algorithm already is adapted
to the training environment and any continued training on the same data distribution thus has little
influence. We further emphasize that, even when evaluated on the training environment, PAD still
outperforms baselines on most tasks. For example, we observe a 15% relative improvement over SAC
on the Finger, spin task. We hypothesize that this gain in performance is because the self-supervised
objective improves learning by constraining the intermediate representation of policies. A blind agent
is no better than random on this particular task, which would suggest that agents benefit substantially
from visual information in Finger, spin. Therefore, learning a good intermediate representation of
that information is highly beneficial to the RL objective, which we find PAD to facilitate through its
self-supervised learning framework. Likewise, the SAC baseline only achieves a 51% improvement
over the blind agent on Cartpole, balance, which indicates that extracting visual information from
observations is not as crucial on this task. Consequently, both PAD and baselines achieve similar
performance on this task.

Table 4. Cumulative reward on the training environment for each of the 9 tasks considered in DMC,
mean and std. dev. for 10 seeds. Best method on each task is in bold and brown compares +IDM
with and without PAD. It is shown that PAD hurts minimally when the environment is unchanged.

Training env. Blind SAC +DR +IDM +IDM (PAD)

Walker, walk 235±17 847±71 756±71 911±24 895±28

Walker, stand 388±10 959±11 928±36 966±8 956±20

Cartpole, swingup 132±41 850±28 807±36 849±30 845±34

Cartpole, balance 646±131 978±22 971±30 982±20 979±21

Ball in cup, catch 150±96 725±355 469±339 919±118 910±129

Finger, spin 3±2 809±138 686±295 928±45 927±45

Finger, turn_easy 172±27 462±146 243±124 462±152 455±160

Cheetah, run 264±75 387±74 195±46 384±88 380±91

Reacher, easy 107±11 264±113 92±45 390±126 365±114

Table 5. Cumulative reward of PAD and baselines in the CRLMaze training environment. All methods
use A2C. We report mean and std. error of 10 seeds. Best method is in bold and brown compares
rotation prediction with and without PAD.

CRLMaze Random A2C +DR +IDM +IDM (PAD) +Rot +Rot (PAD)

Training env. −868±34 371±198 −355±93 585±246 −416±135 729±148 681±99

D Learning curves on DeepMind Control

All methods are trained until convergence (500,000 frames) on the DeepMind Control suite. While
we do not consider the sample efficiency of our method and baselines in this study, we report learning
curves for SAC, SAC+IDM and SAC trained with domain randomization on three tasks in Figure 4
for completeness. SAC trained with and without an IDM are similar in terms of sample efficiency
and final performance, whereas domain randomization consistently displays worse sample efficiency,
larger variation between seeds, and converges to sub-optimal performance in two out of the three
tasks shown.
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Figure 4. Learning curves for SAC, SAC trained with domain randomization (denoted SAC (DR) here),
and SAC+IDM on three tasks from the DeepMind Control suite. Episode reward is averaged across 10
seeds and the 95% confidence intervals are visualized as shaded regions. SAC and SAC+IDM exhibit
similar sample efficiency and final performance, whereas domain randomization consistently displays
worse sample efficiency, larger variation between seeds, and converges to sub-optimal performance
in two out of the three tasks shown.

E Choice of self-supervised task

We investigate how much the choice of self-supervised task contributes to the overall success of
our method, and consider the following ablations on DMC: (i) replacing inverse dynamics with the
rotation prediction task; and (ii) replacing it with the recently proposed CURL [Srinivas et al., 2020]
contrastive learning algorithm for RL. As shown in Table 6, PAD improves generalization of CURL
in a majority of tasks on the randomized color benchmark, and in 4 out of 9 tasks using rotation
prediction. However, inverse dynamics as auxiliary task produces more consistent results and offers
better generalization overall. We argue that learning an IDM produces better representations for motor
control since it connects observations directly to actions, whereas CURL and rotation prediction
operates purely on observations. In general, we find the improvement of PAD to be bigger in tasks
that benefit significantly from visual information (see appendix C), and conjecture that selecting a
self-supervised task that learns features useful to the RL task is crucial to the success of PAD. We
leave it to future work to automate the process of selecting appropriate auxiliary tasks.

F Offline versus online learning

Observations that arrive sequentially are highly correlated, and we thus hypothesize that our method
benefits significantly from learning online. To test this hypothesis, we run an offline variant of our
method in which network updates are forgotten after each step. In this setting, our method can only
adapt to single observations and does not benefit from learning over time. Results are shown in
Table 6. We find that our method benefits substantially from online learning, but learning offline still
improves generalization on select tasks.

G Additional robotic manipulation samples

Figure 5 provides samples from the training and test environments for the reach robotic manipulation
task. Agents are trained in simulation and deployed on a real robot. Samples from the push task are
shown in the main paper.

H Implementation Details

In this section, we elaborate on implementation details for our experiments on DMC and CRLMaze
[Lomonaco et al., 2019]. Our implementation for the robotic manipulation experiments closely
follows that of DMC.
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Table 6. Ablations on the randomized color domain of DMC. All methods use SAC. CURL represents
RL with a contrastive learning task [Srinivas et al., 2020] and Rot represents the rotation predic-
tion [Gidaris et al., 2018]. Offline PAD is here denoted O-PAD for brevity, whereas the default usage
of PAD is in an online setting. Best method is in bold and brown compares +IDM w/ and w/o PAD.

Random colors CURL CURL (PAD) Rot Rot (PAD) IDM IDM (O-PAD) IDM (PAD)

Walker, walk 445±99 495±70 335±7 330±30 406±29 441±16 468±47

Walker, stand 662±54 753±49 673±4 653±27 743±37 727±21 797±46

Cartpole, swingup 454±110 413±67 493±52 477±38 585±73 578±69 630±63

Cartpole, balance 782±13 763±5 710±72 734±81 835±40 796±37 848±29

Ball in cup, catch 231±92 332±78 291±54 314±60 471±75 490±16 563±50

Finger, spin 691±12 588±22 695±36 689±20 757±62 767±43 803±72

Finger, turn_easy 202±32 186±2 283±68 230±53 283±51 321±10 304±46

Cheetah, run 202±22 211±20 127±3 135±12 121±38 112±35 159±28

Reacher, easy 325±32 378±62 99±29 120±7 201±32 241±24 214±44

(a) Simulation. (b) Default transfer. (c) Table cloth. (d) Disco.

Figure 5. Samples from the reach robotic manipulation task. The task is to move the robot gripper to
the location of the red disc. Agents are trained in setting (a) and evaluated in settings (b-d).

Architecture. Our network architecture is illustrated in Figure 6. Observations are stacked frames
(k = 3) rendered at 100× 100 and cropped to 84× 84, i.e. inputs to the network are of dimensions
9×84×84, where the first dimension indicates the channel numbers and the following ones represent
spatial dimensions. The same crop is applied to all frames in a stack. The shared feature extractor πe
consists of 8 (DMC, robotic manipulation) or 6 (CRLMaze) convolutional layers and outputs features
of size 32× 21× 21 in DMC and robotic manipulation, and size 32× 25× 25 in CRLMaze. The
output from πe is used as input to both the self-supervised head πs and RL head πa, both of which
consist of 3 convolutional layers followed by 3 fully-connected layers. All convolutional layers use
32 filters and all fully connected layers use a hidden size of 1024, as in Yarats et al. [2019].

Learning algorithm. We use Soft Actor-Critic (SAC) [Haarnoja et al., 2018] for DMC and robotic
manipulation, and Advantage Actor-Critic (A2C) for CRLMaze. Network outputs depend on the
task and learning algorithm. As the action spaces of both DMC and robotic manipulation are
continuous, the policy learned by SAC outputs the mean and variance of a Gaussian distribution over
actions. CRLMaze has a discrete action space and the policy learned by A2C thus learns a soft-max
distribution over actions. For details on the critics learned by SAC and A2C, the reader is referred to
Haarnoja et al. [2018] and Mnih et al. [2016], respectively.

Hyper-parameters. When applicable, we adopt our hyper-parameters from Yarats et al. [2019]
(DMC, robotic manipulation) and Lomonaco et al. [2019] (CRLMaze). For the robotic manipulation
experiments, our implementation closely follows that of DMC, only differing by number of frames
in an observation. We use a frame stack of k = 3 frames for DMC and CRLMaze, and only k = 1
frame for robotic manipulation. For completeness, we detail all hyper-parameters used for the DMC
and CRLMaze environments in Table 7 and Table 8.

Data augmentation. Random cropping is a commonly used data augmentation used in computer
vision systems [Krizhevsky et al., 2012, Szegedy et al., 2015] but has only recently gained interest
as a stochastic regularization technique in the RL literature [Srinivas et al., 2020, Kostrikov et al.,
2020, Laskin et al., 2020]. We adopt the random crop proposed in Srinivas et al. [2020]: crop
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Figure 6. Network architecture for the DMC, CRLMaze, and robotic manipulation experiments. πs
and πa uses a shared feature extractor πe. Observations are stacks of 100 × 100 colored frames.
Implementation of policy and value function depends on the learning algorithm.

Table 7. Hyper-parameters for the DMC tasks.

Hyperparameter Value

Frame rendering 3× 100× 100
Frame after crop 3× 84× 84
Stacked frames 3
Action repeat 2 (finger)

8 (cartpole)
4 (otherwise)

Discount factor γ 0.99
Episode length 1,000
Learning algorithm Soft Actor-Critic
Self-supervised task Inverse Dynamics Model
Number of training steps 500,000
Replay buffer size 500,000
Optimizer (πe, πa, πs) Adam (β1 = 0.9, β2 = 0.999)
Optimizer (α) Adam (β1 = 0.5, β2 = 0.999)
Learning rate (πe, πa, πs) 3e-4 (cheetah)

1e-3 (otherwise)
Learning rate (α) 1e-4
Batch size 128
Batch size (test-time) 32
πe, πs update freq. 2
πe, πs update freq. (test-time) 1

Table 8. Hyper-parameters for the CRLMaze task.

Hyperparameter Value

Frame rendering 3× 100× 100
Frame after crop 3× 84× 84
Stacked frames 3
Action repeat 4
Discount factor γ 0.99
Episode length 1,000
Learning algorithm Advantage Actor-Critic
Self-supervised task Rotation Prediction
Number of training episodes 1,000 (dom. rand.)

500 (otherwise)
Number of processes 20
Optimizer Adam (β1 = 0.9, β2 = 0.999)
Learning rate 1e-4
Learning rate (test-time) 1e-5
Batch size 20
Batch size (test-time) 32
πe, πs loss coefficient 0.5
πe, πs loss coefficient (test-time) 1
πe, πs update freq. 1
πe, πs update freq. (test-time) 1

rendered observations of size 100× 100 to 84× 84, applying the same crop to all frames in a stacked
observation. This has the added benefits of regularization while still preserving spatio-temporal
patterns between frames. When learning an Inverse Dynamics Model, we apply the same crop to all
frames of a given observation but apply two different crops to the consecutive observations (st, st+1)
used to predict action at.

Policy Adaptation during Deployment. We evaluate our method and baselines with episodic
cumulative reward of an agent trained in a single environment and tested in a collection of test
environments, each with distinct changes from the training environment. We assume no reward
signal at test-time and agents are expected to generalize without pre-training or resetting in the new
environment. Therefore, we make updates to the policy using a self-supervised objective, and we
train using observations from the environment in an online manner without memory, i.e. we make
one update per step using the most-recent observation.

Empirically, we find that: (i) the random crop data augmentation used during training helps regularize
learning at test-time; and (ii) our algorithm benefits from learning from a batch of randomly cropped
observations rather than single observations, even when all observations in the batch are augmented
copies of the most-recent observation. As such, we apply both of these techniques when performing
Policy Adaptation during Deployment and use a batch size of 32. When using the policy to take
actions, however, inputs to the policy are simply center-cropped.
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