
Learning to solve multi-robot scheduling: mean-field
inference theory for random GNN embedding and

scalable auction with provable guarantee

Hyunwook Kang
Texas A&M University

Seungwoo Schin
NCSoft Research

James R. Morrison∗
KAIST, Central Michigan University

Jinkyoo Park∗
KAIST

Abstract

We develop a theory for embedding a random graph using graph neural networks
(GNN) and apply it to address the challenge of developing a near-optimal learning
algorithm to solve the NP-hard problem of scheduling multiple robots with time-
varying rewards. In particular, we consider a class of reward collection problems
called Multi-Robot Reward Collection (MRRC). Such MRRC problems well model
ride-sharing, pickup-and-delivery, and a variety of related problems. Our theory
enables a two-step hierarchical inference for precise and transferable Q-function
estimation for MRRC. For scalable computation, we show that the transferability of
Q-function estimation enables us to design a polynomial-time algorithm with 1−
1/e optimality bound. Experimental results on solving NP-hard MRRC problems
highlight the near-optimality and transferability of the method.

1 Introduction

Consider a set of identical robots seeking to serve a set of spatially distributed tasks. Each task is
given an initial age (which then increases linearly in time). Greater rewards are given to younger
tasks when service is complete according to a predetermined reward rule. We focus on NP-hard
scheduling problems possessing constraints such as ‘no possibility of two robots assigned to a task at
once’. Such problems prevail in operations research, e.g., dispatching vehicles to deliver customers
in a city or scheduling machines in a factory. Impossibility results in asynchronous communication
[4] make these problems inherently centralized.

Proposed methods and contributions. The present paper explores the possibility of near-optimally
solving multi-robot NP-hard scheduling problems with time-dependent rewards using a learning-based
method. This is achieved by extending the probabilistic graphical model (PGM)-based mean-field
inference theory in [1] for random PGM and apply it to develop a GNN-based random graph
embedding method. We use this method to design a transferable (to different size problems) Q-
learning method. Experiments yield 97% optimality under a deterministic environment with linearly-
varying rewards. This performance is well extended to experiments with stochastic traveling time.
An algorithm with provable performance bound addresses the computational limitation of Q-learning.

2 Multi-robot scheduling problem formulation

We formulate a multi-robot reward collection problem (MRRC) as a discrete-time, discrete-state
(DTDS) sequential decision-making problem. We assume that at each decision epoch, we are newly

NeurIPS 2020 3rd Robot Learning Workshop: Grounding Machine Learning Development in the Real World.

given the duration of time required for a robot to complete each task, which we call task completion
time. Due to page limitation, we let figure 1 to illustrate the problem description. Please refer
Appendix A.1 for the detailed state representation, joint assignment, transition function and reward,
and the problem objective. Here, we briefly introduce how MRRC can model problems such as
ride-sharing or package delivery problems in which the robot location at the start of the task is
different than at the end. Consider pickup and delivery tasks as illustrated in Figure 1. Task 1, denoted
as τ1, is to pickup from A and deliver to location B. The weight assigned to the edge εTT2,1 is the task
completion time for a robot who has just completed task 2, and is thus located at C, who subsequently
completes task 1. The traveling distance to task 1 (C → A) is 4 and the delivery distance (A→ B)
is 3, so the task completion time is εTT2,1 = 3 + 4 = 7.

Figure 1: Representing a ridesharing/pickup and delivery problem as an MRRC problem

3 Scheduling by Inferencing with a Random PGM

This section requires a background knowledge in Probabilistic graphical model (PGM), mean field
inference, and PGM-based GNN embedding method called structure2vec [1]. Due to limitation in
length of this paper, we recommend readers to refer section A.3.

Random PGM. Denote the set of all random variables in the inference problem as X = {Xi}.
Suppose that the set of all possible PGMs on X , denoted as GX , is prior knowledge (e.g., for a robot
scheduling problem, PGM is often a specific Bayesian Network - see Appendix A.4). A random PGM
on X is then defined as {GX ,P} where P : GX 7→ [0, 1] is the probability measure for a realization
of an element of GX . Note that the inference of P will be difficult. To avoid this task, we start by
defining semi-cliques. Suppose that we are given the set of all possible cliques on X as CX . Only a
few cliques in CX will be actually realized as an element of PGM according to P and become real
cliques. So we call the elements Dm ∈ CX as semi-cliques. Note that if we are given P then we can
easily calculate the presence probability pm of semi-clique Dm as pm =

∑
G∈GX P(G)1Dm∈G.

Mean-field inference with random PGM. The following theorem extends mean-field inference
with PGM ([10]) to mean-field inference with random PGM. It shows that we only need to infer the
presence probability of each semi-clique in the random PGM, not P .

Theorem 1. Random PGM based mean field inference. Suppose we are given a random PGM on
X = {Xk}. Also, assume that we know presence probability {pm} for all semi-cliques Dm ∈ CX .
The surrogate distribution {qk(xk)} in mean-field inference is locally optimal only if qk (xk) =
1
Zk

exp
{∑

m:Xk∈Dm pmE(Dm−{Xk})∼q [lnφm (Dm, xk)]
}

where Zk is a normalizing constant and
φm is the clique potential for clique m. (For the proof see Appendix A.6.)

Random structure2vec. From Theorem 1, we can develop a random structure2vec corresponding
to a random PGM with ({Hk}, {Yk}). That is, we can combine (i) the fixed point equation of
the mean field approximation for qk (hk) (Theorem 1) and (ii) the injective embedding for µ̃i =∫
H φ(Hi)p(hi|yi)dhi to come up with parameterized fixed point equation for µ̃k (see Figure 4). As in

[1], we restrict our discussion to the case where there are semi-cliques between two random variables.
In this case, the notation we use for Dm and pm is Dij and pij .

Lemma 1. Structure2vec for random PGM. Given a random PGM on X = ({Hk}, {Yk}). As [1],
suppose that our problem has a PGM structure with joint distribution proportional to some factor-
ization

∏
k φ (hk, yk)

∏
i,j φ (hi, hj). Assume that the presence probabilities {pij} for all pairwise

semi-cliques Dij ∈ CX are given. Then fixed point equation in Theorem 1 for p({Hk}|{yk}) is

2

embedded to generate the fixed point equation µ̃k = σ
(
W1yk +W2

∑
j 6=k pkj µ̃j

)
.

The proof of Lemma 1 can be found in Appendix A.7.
Remarks. Note that inference of P is in general a difficult task. One implication of Theorem 1
is that we transformed a difficult inference task to a simple inference task: inferring the presence
probability of each semi-clique. (See Appendix A.8 for the algorithm that conducts this task). In
addition, Lemma 1 provides a theoretical justification to ignore the interdependencies among edge
presences when embedding a random graph using GNN. When graph edges are not explicitly given
or known to be random, the simplest heuristic one can imagine is to separately infer the presence
probabilities of all edges and adjust the weights of GNN’s message propagation. According to Lemma
1, possible interdependencies among edges would not affect the quality of such heuristic’s inference.

4 Scheduling MRRC with Random structure2vec

Figure 2: Illustration of overall pipeline of our method

4.1 Order transferability of Q-fnction estimation for transferable Q-learning

As illustrated in Appendix A.4, MRRC problems with no randomness induces Bayesian networks
with factorization

∏
k φ (hk, yk)

∏
i,j φ (hi, hj). Therefore, according to Lemma 1, we are justified

to use random structure2vec to design a method to learn solutions to our MRRC problems. As
illustrated in [8], the action (joint assignment in our problem) choice is precise as long as the order
of estimated Q-function value among actions are precise. That is, as long as the best assignments
chosen are the same, i.e., argmaxatk

Qn(stk , atk) = argmaxatk
Qnθ (stk , atk), the magnitude of

imprecision |Qn(stk , atk)−Qnθ (stk , atk)| does not matter. We call this property order-transferability
of Q-function estimator with θ. Due to page limitation, we let figure 2 to give a brief illustration of
how we can design a Q-function estimator with order transferability. For details, refer Appendix A.5.

4.2 Order transferability-enabled auction for scalable computation

Learning-based heuristics for solving NP-hard problems have recently received attention due to their
fast computation speed for large size NP-hard problems [2]. However, this advantage disappears for
Q-learning methods when faced with large action spaces [12]. For multi-robot/machine scheduling
problems, the set of all multi-robot assignments at each decision epoch is the action space; it grows
exponentially as the number of robots and tasks increases. As such, the computational requirement of
the argmaxatk

Q(stk , atk) operation increases exponentially. In this section, we demonstrate how
order transferability of Q-function estimation enables us to design a polynomial-time algorithm with
a provable performance guarantee (1− 1/e optimality) to substitute for the argmax operation. We
call this algorithm an order transferability-enabled auction-based policy (OTAP) and denote it as πQθ ,
where the Qθ indicates that the Q-function estimator with current parameter θ is used during the
auction. For the detailed auction algorithm, main proofs, and the notations used for the proofs, see
Appendix A.11. Here we briefly introduce the main theorem in plain English.
Theorem 2. Performance bound of OTAP. Order transferability enabled auction (OTAP)-based as-
signment choice is a polynomial time algorithm with 1− 1/e optimality performance bound.

3

5 Experiments and results

One of the main benefits of learning-based heuristics is its capability to tractably solve stochastic
scheduling problems [17]. We focus on experiments under DTDS environment and target to show that
our algorithm’s performance for deterministic environments extends to stochastic environments. Since
there is no standard dataset for MRRC problems, we deliberately created a grid-world environment
that generates nontrivial task completion time distributions with minimizing the selection bias. The
idea we took was to use a complex maze (see Figure 2) generator of [14] and compare it with the
baselines. For detailed experiment design and simulator video, see Appendix A.14 and Supplementary
material.Throughout, the performance measure used is ρ = (%rewards collected by the proposed
method/reward collected by the baseline). For %Optimal, Gurobi [6] was computed for 60 minutes
for problems with the deterministic environment and linear rewards. Ekici et al [3] is a up-to-date,
fast heuristic for MRRC. Sequential Greedy Algorithm (%SGA) is an indirect baseline using a
general-purpose multi-robot task allocation algorithm called SGA ([7]) to see that the %SGA in the
deterministic linear-reward case is maintained for stochastic environments or exponential rewards.

Performance test. We tested the performance under four environments: deterministic/linear rewards,
deterministic/nonlinear rewards, stochastic/linear rewards, stochastic/nonlinear rewards. See Table 1.
For linear/deterministic rewards, our method achieves near-optimality with 3% fewer rewards than
optimal on average. The standard deviation for ρ is provided in parentheses. For others, we see that
the %SGA ratio for linear/deterministic is well maintained in stochastic or nonlinear environments.

Table 1: Performance test (50 trials of training for each cases)

Reward Environment Baseline Testing size : Robot (R) / Task (T)
2R/20T 3R/20T 3R/30T 5R/30T 5R/40T 8R/40T 8R/50T

Linear Deterministic

%Optimal
(Gurobi 60min)

98.31 97.50 97.80 95.35 96.99 96.11 96.85

%Ekisi et al. 99.86 97.50 118.33 110.42 105.14 104.63 120.16
%SGA 137.3 120.6 129.7 110.4 123.0 119.9 119.8

Stochastic %SGA 130.9 115.7 122.8 115.6 122.3 113.3 115.9

Nonlinear Deterministic %SGA 111.5 118.1 118.0 110.9 118.7 111.2 112.6
Stochastic %SGA 110.8 117.4 119.7 111.9 120.0 110.4 112.4

Transferability test. Table 2 shows comprehensive transferability test results. The rows indicate
training conditions, while the columns indicate testing conditions. The results in the diagonal cells in
red (cells with the same training size and testing size) serve as baselines (direct testing). The results
in the off-diagonal show the results for the transferability testing, and demonstrate how the algorithms
trained with different problem size perform well on test problems. We can see that lower-direction
transfer tests (trained with larger size problems and tested with smaller size problems) show only a
small loss in performance. For upper-direction transfer tests (trained with smaller size problems and
tested with larger size problems), the performance loss was up 4 percent.

Table 2: Transferability test (50 trials of training for each cases, linear & deterministic env.)

Testing size : Robot (R) / Task (T)
Training size

(Robot(R)/Task(T)) 2R/20T 3R/20T 3R/30T 5R/30T 5R/40T 8R/40T 8R/50T

2R/20T 98.31 93.61 97.31 92.16 92.83 90.94 93.44

3R/20T 95.98 97.50 96.11 93.64 91.75 91.60 92.77

3R/30T 94.16 96.17 97.80 94.79 93.19 93.14 93.28

5R/30T 97.83 94.89 96.43 95.35 93.28 92.63 92.40

5R/40T 97.39 94.69 95.22 93.15 96.99 94.96 93.65

8R/40T 95.44 94.43 93.48 93.93 96.41 96.11 95.24

8R/50T 95.69 96.68 97.35 94.02 94.50 94.86 96.85

6 Concluding Remarks

We develop theories that are useful to address the challenge of developing learning-based methods
for multi-robot scheduling problems. For more experiments including scalability analysis and other
applications such as Independent parallel machine scheduling problem (IPMS), see Appendices.

4

References
[1] Hanjun Dai, Bo Dai, and Le Song. “Discriminative Embeddings of Latent Variable Models for

Structured Data”. In: 48 (2016), pp. 1–23. DOI: 1603.05629. arXiv: 1603.05629.
[2] Hanjun Dai et al. “Learning Combinatorial Optimization Algorithms over Graphs”. In: Nips

(2017).
[3] Ali Ekici and Anand Retharekar. “Multiple agents maximum collection problem with time

dependent rewards”. In: Computers and Industrial Engineering 64.4 (2013), pp. 1009–1018.
ISSN: 03608352. DOI: 10.1016/j.cie.2013.01.010. URL: http://dx.doi.org/10.
1016/j.cie.2013.01.010.

[4] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. “Impossibility of distributed
consensus with one faulty process”. In: Journal of the ACM (JACM) 32.2 (Apr. 1985), pp. 374–
382. ISSN: 0004-5411. DOI: 10.1145/3149.214121. URL: http://dl.acm.org/doi/10.
1145/3149.214121.

[5] Google. Google OR-Tools. 2012. URL: https : / / developers . google . com /
optimization/.

[6] LLC Gurobi Optimization. Gurobi Optimizer Reference Manual. 2019. URL: http://www.
gurobi.com.

[7] Han-Lim Choi, Luc Brunet, and J.P. How. “Consensus-Based Decentralized Auctions for
Robust Task Allocation”. In: IEEE Transactions on Robotics 25.4 (Aug. 2009), pp. 912–926.
ISSN: 1552-3098. DOI: 10.1109/TRO.2009.2022423.

[8] Hado van Hasselt, Arthur Guez, and David Silver. “Deep Reinforcement Learning with Double
Q-learning”. In: (2015). arXiv: 1509.06461.

[9] Thomas N. Kipf and Max Welling. Semi-Supervised Classification with Graph Convolutional
Networks. Feb. 2017. URL: https://arxiv.org/abs/1609.02907.

[10] Daphne Koller and Nir Friedman. Probabilistic graphical models : principles and techniques,
page 449-453. 1st. The MIT Press, 2009, p. 1233. ISBN: 9780262013192.

[11] M E Kurz et al. “Heuristic scheduling of parallel machines with sequence-dependent set-up
times”. In: International Journal of Production Research 39.16 (2001), pp. 3747–3769. ISSN:
0020-7543. DOI: 10.1080/00207540110064938.

[12] Timothy P Lillicrap et al. “Continuous control with deep reinforcement learning”. In: (Sept.
2015). arXiv: 1509.02971.

[13] Francesco Maffioli. “Randomized algorithms in combinatorial optimization: A survey”. In:
Discrete Applied Mathematics 14.2 (1986), pp. 157–170. ISSN: 0166-218X. DOI: https:
//doi.org/10.1016/0166-218X(86)90058-2. URL: http://www.sciencedirect.
com/science/article/pii/0166218X86900582.

[14] Todd Neller et al. “Model AI Assignments”. In: Proceedings of the Twenty-Fourth AAAI
Conference on Artificial Intelligence (AAAI-10) (2010), pp. 1919–1921.

[15] Shayegan Omidshafiei et al. “Decentralized control of multi-robot partially observable Markov
decision processes using belief space macro-actions”. In: The International Journal of Robotics
Research 36.2 (2017), pp. 231–258. DOI: 10.1177/0278364917692864.

[16] Matthias Plappert et al. “Parameter Space Noise for Exploration”. In: (2017), pp. 1–18. arXiv:
1706.01905.

[17] Federico Rossi et al. “Review of Multi-Agent Algorithms for Collective Behavior: a Structural
Taxonomy”. In: IFAC-PapersOnLine 51.12 (2018), pp. 112–117. ISSN: 24058963. DOI: 10.
1016/j.ifacol.2018.07.097.

References.bib

A Appendix

A.1 Multi-robot scheduling problem formulation.

For the edge from task p to task q, we denote as εTTp,q . The edge weight assigned is the task completion
time for a robot that has just completed task p to subsequently complete task q. Let ETT ,WTT be
the set of all εTTp,q and the set of corresponding weights. All elements ofWTT are multiples of ∆).

5

https://doi.org/1603.05629
https://arxiv.org/abs/1603.05629
https://doi.org/10.1016/j.cie.2013.01.010
http://dx.doi.org/10.1016/j.cie.2013.01.010
http://dx.doi.org/10.1016/j.cie.2013.01.010
https://doi.org/10.1145/3149.214121
http://dl.acm.org/doi/10.1145/3149.214121
http://dl.acm.org/doi/10.1145/3149.214121
https://developers.google.com/optimization/
https://developers.google.com/optimization/
http://www.gurobi.com
http://www.gurobi.com
https://doi.org/10.1109/TRO.2009.2022423
https://arxiv.org/abs/1509.06461
https://arxiv.org/abs/1609.02907
https://doi.org/10.1080/00207540110064938
https://arxiv.org/abs/1509.02971
https://doi.org/https://doi.org/10.1016/0166-218X(86)90058-2
https://doi.org/https://doi.org/10.1016/0166-218X(86)90058-2
http://www.sciencedirect.com/science/article/pii/0166218X86900582
http://www.sciencedirect.com/science/article/pii/0166218X86900582
https://doi.org/10.1177/0278364917692864
https://arxiv.org/abs/1706.01905
https://doi.org/10.1016/j.ifacol.2018.07.097
https://doi.org/10.1016/j.ifacol.2018.07.097

State. The state stk at time tk is represented as
(
Gtk ,WRT

tk
, αtk

)
. Gt is a directed bipartite graph

(R ∪ Ttk , ERTtk) where R is the set of all robots, Ttk is the set of all remaining unserved tasks at
time step tk. The set ERTtk consists of all directed edges from robots to unserved tasks at time tk. To
each edge is associated a weight equal to the task completion time. LetWRT

tk
denote the set of all

such weights for all edges at tk (either constants or random variables, of which values are restricted
to multiples of ∆ in the the DTDS system). For example, εRTi,p ∈ ERTtk is an edge indicating robot
i is assigned to serve task p. To this edge a task completion time is assigned according to current
locations of the robot i and task p. Each task is given an initial age which increases linearly with time
(a multiple of ∆ for DTDS). Let αtk = {ηptk ∈ R|p ∈ Ttk} denote the set of ages where ηptk indicates
the age of task p at time-step tk. We denote the set of possible states as S. In the middle image in
Figure 1, state stk (robots nodes, task nodes, arcs from robots to tasks and their weights, and ages),
the system ETT (arcs between task nodes) and their weightsWTT are depicted.

Joint assignment. Once a robot has reached a task, it will conduct it until completion. Otherwise,
we allow reassignment prior to arrival. Thus, available robots can change their assignments whenever
a decision epoch occurs. A joint assignment of robots to tasks at current state stk =

(
Gtk ,WRT

tk
, αtk

)
,

denoted as atk , should satisfy: (i) no two robots can be assigned to the same task, and (ii) a robot may
only remain without assignment when the number of robots exceeds the number of remaining tasks.
Thus, a joint assignment atk is the set of edges in a maximal bipartite matching of the bipartite graph
Gtk . The action space Atk is depends upon stk , as it is defined as the set of all maximal bipartite
matchings in Gtk . A policy π is defined as π(stk) = atk , where stk ∈ S and atk ∈ Atk .

Transition function and reward. In the hierarchical control literature, our assignment is termed a
macro-action. In pursuit of the macro-action, robots may make multiple sequential micro-actions to
serve the task. The transition probability associated with a macro-action is derived from the transition
probabilities associated with micro-actions [15]. For a joint macro-action, assume there is an
induced joint micro-action denoted as ut ∈ U with associated transition probabilities P (st+1|st, ut) :
St × Ut × St → [0, 1]. [15] proves we can calculate the corresponding ‘extended transition function’
P ′
(
stk+1

|stk , atk
)

: Stk ×Atk × Stk → [0, 1].

When a task is served, a reward is given according to a predetermined reward function that computes
rewards according to the task’s age at the time of service. Note that the state and assignment
information stk , atk and stk+1

are thus sufficient to determine the reward at decision epoch tk+1. As
such we denote the reward function as R(stk , atk , stk+1) : Stk ×Atk × Stk 7→ R.

Objective. Given an initial state st0 ∈ S, the MRRC seeks to maximize the sum
of expected rewards through time by optimizing an assignment policy π∗ as π∗ =

argmax
π

Eπ,P ′
[∑∞

k=0R
(
stk , π(stk), s

tk+1

)
|st0
]
.

A.2 Identical parallel machine scheduling problem (IPMS) with makespan minimization
objective

A.2.1 Formulation

IPMS is a problem defined in continuous state/continuous time space. Once service of a task i
begins, it requires a deterministic duration of time τi for a machine to complete - we call this the
processing time. Machines are all identical, which means processing time of each tasks among
machines are all the same. Processing times of each tasks are all different. Before a machine can
start processing a task, it is required to first setup for the task. In this paper, we discuss IPMS with
‘sequence-dependent setup times’. In this case, a machine must conduct a setup prior to serving each
task. The duration of this setup depends on the current task i and the task j that was previously
served on that machine - we call this the setup time. The completion time for each task is thus
the sum of the setup time and processing time. Under this setting, we solve the IPMS problem for
make-span minimization as discussed in [11]. That is, we seek to minimize the total time spent from
the start time to the completion of the last task. IPMS problem’s sequential decision making problem
formulation resembles that of MRRC with continuous-time and continuous-space. That is, every
time there is a finished task, we make assignment decision for a free machine. We call this times
as ‘decision epochs’ and express them as an ordered set (t1, t2, . . . , tk, . . .). Abusing this notation
slightly, we use (·)tk = (·)k. This problem can be cast as a Markov Decision Problem (MDP) whose
state, action, and reward are defined as follows:

6

State. The state stk at time tk is represented as
(
Gtk ,WRT

tk
, tk
)
. Gt is a directed bipartite graph

(R∪ Ttk , ERTtk) whereR is the set of all machines, Ttk is the set of all remaining unserved tasks at
time step tk. The set ERTtk consists of all directed edges from machines to unserved tasks at time tk.
To each edge is associated a weight equal to the task completion time. LetWRT

tk
denote the set of all

such weights for all edges at tk (either constants or random variables and restricted to multiples of
∆ in the the DTDS system). For example, εRTi,p ∈ ERTtk is an edge indicating machine i is assigned
to serve task p. To this edge a random variable denoting the task completion time (a duration) is
assigned. Each task is given an initial age which increases linearly with time (a multiple of ∆ for
DTDS). Let αtk = {ηptk ∈ R|p ∈ Ttk} denote the set of ages where ηptk indicates the age of task p at
time-step tk. We denote the set of possible states as S.

Action. Defined the same as MRRC with continuous state/time space.

Reward. Let’s denote the time between decision epoch k and decision epoch k+1 as Tk = tk−tk−1.
One can easily see that Tk is completely determined by sk, ak and sk+1. Therefore, we can denote
the reward we get with sk, ak and sk+1 as T (sk, ak, sk+1).

Transition probabilities. The transition probability P ′ is defined the same as MRRC problem.

Objective. We can now define an assignment policy φ as a function that maps a state sk to action ak.
Given s0 initial state, an IPMS problem with makespan minimization objective can be expressed as a
problem of finding an optimal assignment policy φ∗ such that

φ∗ = argmin
φ

Eπ,P ′
[∞∑
k=0

T (sk, ak, sk+1) |s0

]
.

Table 3: IPMS test results for makespan minimization with deterministic task completion time (our
algorithm / best Google OR tool result)

Makespan # Machines
minimization 3 5 7 10

Tasks
50 106.7% 117.0% 119.8% 116.7%
75 105.2% 109.6% 113.9% 111.3%

100 100.7% 111.0% 109.1% 109.0%

A.2.2 Experiments

For IPMS, we test it with continuous time, continuous state environment. While there have been many
learning-based methods proposed for (single) robot scheduling problems, to the best our knowledge
our method is the first learning method to claim scalable performance among machine-scheduling
problems. Hence, in this case, we focus on showing comparable performance for large problems,
instead of attempting to show the superiority of our method compared with heuristics specifically
designed for IPMS (actually no heuristic was specifically designed to solve our exact problem
(makespan minimization, sequence-dependent setup with no restriction on setup times))

For each task, processing times is determined using uniform [16, 64]. For every (task i, task j)
ordered pair, a unique setup time is determined using uniform [0, 32]. As illustrated in Appendix
A.2, we want to minimize make-span. As a benchmark for IPMS, we use Google OR-Tools library
[5]. This library provides metaheuristics such as Greedy Descent, Guided Local Search, Simulated
Annealing, Tabu Search. We compare our algorithm’s result with the heuristic with the best result for
each experiment. We consider cases with 3, 5, 7, 10 machines and 50, 75, 100 jobs.

The results are provided in Appendix Table 3. Makespan obtained by our method divided by the
makespan obtained in the baseline is provided. Although our method has limitations in problems
with a small number of tasks, it shows comparable performance to a large number of tasks and shows
its value as the first learning-based machine scheduling method that achieves scalable performance.

7

Figure 3: Representing MRRC as a random Bayesian Network

A.3 Background on probabilistic graphical model (PGM) and structure2vec

PGM. Given random variables X = {Xk}, suppose that we can factor the joint distribution p (X)
as p (X)= 1

Z

∏
i φi (Di) where φi(Di) denotes a marginal distribution or conditional distribution

associated with a set of random variables Di; Z is a normalizing constant. Then {Xk} is called a
probabilistic graphical model (PGM). In a PGM, Di is called a clique and φi(Di) is called a clique
potential for Di. When we write simply φi, suppressing Di, Di is called the scope of φi.

Mean-field inference with PGM. A popular use of PGM is PGM-based mean-field inference.
Suppose that X = {{Yk}, {Hj}}, where we are interested in the inference of {Hj} given {Yk}. For
the inference problem, our interest will be calculating p ({Hj = hj} | {Yk = yk}) but the calculation
might not be tractable. In mean-field inference, we instead find a surrogate distribution q({Hj =
hj}) =

∏
j qj(hj) with smallest Kullback-Leibler distance to p ({Hj = hj} | {Yk = yk}). This

surrogate distribution is then used to conduct the inference. Hereafter, for convenience, we suppress
explicit mention of the random variable, for example, we write p(hj) for p(Hj = hj). [10] shows
that when we are given a PGM, the q({hj}) can be obtained by a fixed point equation. Despite the
usefulness of this approach, we are not often directly given the PGM.

Structure2vec. In some problems such as molecule classification problems, data is given as graphs.
For such special cases, [1] suggests that this graph structure information may be enough to conduct
a mean-field inference when combined with Graph Neural Network (GNN). Let us first embed
p (hj | {yk}) to a vector µ̃j using the equation µ̃j =

∫
H φ (hj) p (hj | {yk}) dhj . Suppose that our

problem has a special PGM structure that joint distribution is proportional to some factorization∏
k∈V φ (hk, yk)

∏
i,j∈V φ (hi, hj), where V denotes the set of vertex indexes. Then according to [1],

the embedding of the fixed point iteration operation of PGM-based mean-field inference corresponds
to a neural network operation µ̃i = σ(W1yi + W2

∑
j 6=i µ̃j) (σ denotes Relu function and W

denotes parameters of neural networks). We can therefore use {µ̃k} to solve the original inference
problem instead of p ({hk} | {yj}) or q({hk}). Note that their suggested neural network operation is
similar to the network structure of Graph Convolutional Networks [9], a popular GNN-based graph
embedding method. This observation enables one to interpret GNN-based graph embedding methods
as mean-field inference using PGM.

8

Figure 4: State representation and main inference procedure

A.4 Bayesian Network representation

Here we illustrate that robot scheduling problem randomly induces a random Bayesian Network from
state st. See figure 3. Given starting state st and action at, a person can repeat a random experiment of
“sequential decision making using policy φ”. In this random experiment, we can define events ‘How
robots serve all remaining tasks in which sequence’. We call such an event a ‘scenario’. For example,
suppose that at time-step t we are given robots {A,B}, tasks {1, 2, 3, 4, 5}, and policy φ. One
possible scenario S∗ can be {robot A serves task 3→ 1→ 2 and robot B serves task 5→ 4}. Define
random variable {{Hj} a task characteristic, e.g. ‘The time when task k is serviced’. The question
is, ‘Given a scenario S∗, what is the relationship among random variables {Hk}’ {yk} (inputs in
section 4.1)? Recall that in our sequential decision making formulation we are given all the ‘task
completion time’ information in the st description. Note that, task completion time is only dependent
on the previous task and assigned task. In our example above, under scenario S∗ ‘when task 2 is
served’ is only dependent on ‘when task 1 is served’. That is, P (H2|H1, H3, S

∗) = P (H2|H1, S
∗).

This relationship is called ‘conditional independence’. Given a scenario S∗, every relationship
among {Hi|S∗} can be expressed using this kind of relationship among random variables. A graph
with this special relationship is called ‘Bayesian Network’ [10], a probabilistic graphical model.
Therefore, under a fixed scenario S∗, this problem’s joint distribution can be assumed to be factored
as PGM structure

∏
k φ (hk|yk)

∏
i,j φ (hi|hj) where yk is the inputs considered in section 4.1 and

Hi denoting the time task i is served.

A.5 Designing Q-function estimator having order-transferability

Intuitively, local graph information around node k is embedded into the structure2vec output vector
µ̃k [1]. Using this intuition, we propose a two-step sequential and hierarchical state-embedding
neural network using random structure2vec that is designed to achieve what we will later call order-
transferable Q-function estimation. This allows problem-size transferable Q-learning, i.e., the neural
network parameter θ, trained to calculate Qmθ that approximates the Q-function Qm for an m-robot
scheduling problem, can be well used to solve n-robot scheduling problems (n 6= m). For brevity,
we assume task completion times are deterministic. For the detailed algorithm with random task
completion times, see Appendix A.9. The following procedure is illustrated in Figure 2.

Step 1. Distance Embedding. The first structure2vec layer embeds information of robot locations
around each task k, i.e. local graph structure around each task k with respect to robots, to each µ̃1

k
(superscript 1 denotes the outcome of first layer). For the input of the first structure2vec layer ({xk}
in Lemma 1), we only use robot assignment information (if k is an assigned task, we set the value of
xk to task completion time of assignment (a duration); if k is not an assigned task:, we set xk = 0).
Step 2. Value Embedding. The second structure2vec layer embeds how much value is likely in the
local graph around task k to µ̃2

k. Recall that the output vectors of the first structure2vec layer, {µ̃1
k},

carry information about the graph structure of robots locally around each task. For each task k, we
concatenate task k’s age ηkt with µ̃1

k to get µ̃′1k and use {µ̃′1k } as the input ({xk} in Lemma 1) to the
second structure2vec layer. Denote the outcome of second structure2vec layer as {µ̃2

k}.
Step 3. Computing Qθ(stk , atk). To derive Qθ(stk , atk), we aggregate the embedding vectors for
all nodes by µ̃2 =

∑
k µ̃

2
k to obtain one global vector µ̃2 to embed the value affinity of the global

graph. We then use a neural network to map µ̃2 into Qθ(stk , atk).

9

Let us provide the intuition related to problem-size transferability of Q-learning. Step 1 above,
transferability is trivial; the inference problem is a scale-free task locally around each node. For Step
2, consider the ratio of robots to tasks. The overall value affinity embedding will be underestimated if
this ratio in the training environment is smaller than this ratio in the testing environment; overestimated
overall otherwise. The intuition is that this over/under-estimation does not matter in Q-learning
[8] as long as the order of Q-function value among actions are the same. That is, as long as the
best assignments chosen are the same, i.e., argmaxatk

Qn(stk , atk) = argmaxatk
Qnθ (stk , atk), the

magnitude of imprecision |Qn(stk , atk) − Qnθ (stk , atk)| does not matter. We call this property
order-transferability of Q-function estimator with θ.

A.6 Proof of Theorem 1.

We first define necessary definitions for our proof. Given a random PGM {GX ,P}, a PGM is chosen
among GX , the set of all possible PGMs on X . The set of semi-cliques is denoted as CX . As
discussed in the main text, if we are given P then we can easily calculate the presence probability pm
of semi-clique Dm as pm =

∑
G∈GX P(G)1Dm∈G.

For each semi-clique Di in CX , define a binary random variable V i: F 7→ {0, 1} with value 0
for the factorization that does not include semi-clique Di and value 1 for the factorization that
include semi-clique Di. Let V be a random vector V =

(
V 1, V 2, . . . , V |CX |

)
. Then we can express

P (X1, . . . , Xn|V) ∝
∏|CX |
i=1

[
φi
(
Di
)]V i

. We denote
[
φi
(
Di
)]V i

as ψ(Di).

Now we prove Theorem 1.

In mean-field inference, we want to find a distribution Q (X1, . . . , Xn) =
∏n
i=1Qi(Xi) such that

the cross-entropy between it and a target distribution is minimized. Following the notation in [10],
the mean field inference problem can written as the following optimization problem.

min
Q

D

(∏
i

Qi |P (X1, . . . , Xn|V))

)
s.t.

∑
xi

Qi (xi) = 1 ∀i

Here D (
∏
iQi | P (X1, . . . , Xn|V)) can be expressed as D (

∏
iQi | P (X1, . . . , Xn|V)) =

EQ [ln (
∏
iQi)]− EQ [ln (P (X1, . . . , Xn|V))].

10

Note that

EQ [ln (P (X1, . . . , Xn|V))] = EQ
[
ln

(
1

z
Π
|CX |
i=1 ψ

i
(
Di, V

))]

= EQ

ln

1

z

|CX |∏
i=1

ψi
(
Di, V

)
= EQ

|CX |∑
i=1

V i ln
(
φi
(
Di
))− EQ[ln(Z)]

=

|CX |∑
i=1

EQ
[
V i ln

(
φi
(
Di
))]
− EQ[ln(Z)]

=

|CX |∑
i=1

EV i
[
EQ
[
V i ln

(
φi
(
Di
))
|V i
]]
− EQ[ln(Z)]

=

|CX |∑
i=1

P
(
V i = 1

) [
EQ
[
ln
(
φi
(
Di
))]]
− EQ[ln(Z)]

=

|CX |∑
i=1

pi
[
EQ
[
ln
(
φi
(
Di
))]]
− EQ[ln(Z)].

Hence, the above optimization problem can be written as

max
Q

EQ

|CX |∑
i=1

pi ln
(
φi
(
Di
))+ EQ

n∑
i=1

(lnQi)

s.t.
∑
xi

Qi (xi) = 1 ∀i
(1)

In [10], the fixed point equation is derived by solving an analogous equation to (1) without the
presence of the pi. Theorem 1 follows by proceeding as in [10] with straightforward accounting for
pi.

A.7 Proof of Lemma 1.

Since we assume semi-cliques are only between two random variables, we can denote CX = {Dij}
and presence probabilities as {pij} where i, j are node indexes. Denote the set of nodes as V .

From here, we follow the approach of [1] and assume that the joint distribution of random variables
can be written as

p ({Hk} , {Xk}) ∝
∏
k∈V

ψi (Hk|Xk)
∏
k,i∈V

ψi (Hk|Hi) .

Expanding the fixed-point equation for the mean field inference from Theorem 1, we obtain:

Qk (hk) =

1

Zk
exp

 ∑
ψi:Hk∈Di

E(Di−{Hk})∼Q
[
lnψi

(
Hk = hk|Di

)]
=

1

Zk
exp{lnφ (Hk = hk|xk) +∑

i∈V

∫
H
pkiQi (hi) lnφ (Hk = hk|Hi) dhi}.

11

This fixed-point equation for Qk (hk) is a function of {Qj (hj)}j 6=k such that

Qk (hk) = f
(
hk, xk, {pkjQj (hj)}j 6=k

)
.

As in [1], this equation can be expressed as a Hilbert space embedding of the form

µ̃k = T̃ ◦
(
xk, {pkj µ̃j}j 6=i

)
,

where µ̃k indicates a vector that encodes Qk (hk) . In this paper, we use the nonlinear mapping T̃
(based on a neural network form) suggested in [1]:

µ̃k = σ

W1xk +W2

∑
j 6=k

pkj µ̃j


A.8 Simple presence probability inference method used for MRRC

Denote ages of task i, j as agei, agej . Note that if we generate M samples of εij as {ekij}Mk=1, then
1
M

∑M
k=1 f(ekij , agei, agej) is an unbiased and consistent estimator of E[f(εij , agei, agej)]. The

corresponding neural network-based inference is as follows: for each sample k, for each task i and
task j, we form a vector of ukij = (ekij , agei, agej) and compute gij =

∑M
k=1

1
MW1(relu(W2u

k
ij).

We obtain {pij} from {gij} using softmax.

The pseducode implementation is as follows: In lines 1 and 2, the likelihood of the existence of a
directed edge from each node m to node n is computed by calculating W1

(
relu

(
W2u

k
mn

))
and

averaging over the M samples. In lines 3 and 4, we use the soft-max function to obtain pm,n.

1 For m,n ∈ V do
2 gmn = 1

M

∑M
k=1W1

(
relu

(
W2u

k
mn

))
3 For m,n ∈ V do
4 pm,n = egmn/τ∑

j∈v e
gmn/τ

.

A.9 Complete algorithm of section A.5 with task completion time as a random variable

We combine random sampling and inference procedure suggested in section and Figure 3. Denote the
set of task with a robot assigned to it as T A. Denote a task in T A as ti and the robot assigned to ti
as rti . The corresponding edge in ERT for this assignment is εrti ti . The key idea is to use samples
of εrti ti to generate N number of sampled Q(s, a) value and average them to get the estimate of
E(Q(s, a)). First, for l = 1 . . . N we conduct the following procedure. For each task ti in T A, we
sample one data elrti ti . Using those samples and {pij}, we follow the whole procedure illustrated
in section A.5 to get Q(s, a)l. Second, we get the average of {Q(s, a)l}l=Nl=1 to get the estimate of
E(Q(s, a)), 1

N

∑l=N
l=1 Q(s, a)l.

The complete algorithm of section A.5 with task completion time as a random variable is given as
below.

1 agei = age of node i
2 The set of nodes for assigned tasks ≡ TA
3 Initialize {µ̃(0)

i }, {γ
(0)
i }

4 for l = 1 to N :
5 for ti ∈ T :
5 if ti ∈ T A do:
6 sample elrti ti from εrti ti
7 xi = elrti ti
9 else: xi = 0
10 for t = 1 to T1 do
11 for i ∈ V do
12 li =

∑
j∈V pjiµ̃

(t−1)
j

12

13 µ̃
(t)
i = relu (W3li +W4xi)

14 µ̃l = Concatenate
(
µ̃
(T1)
i , agei

)
15 for t = 1 to T2 do
16 for i ∈ V do
17 li =

∑
j∈V pjiγ

(t−1)
j

18 γ
(t)
j = relu (W5li +W6µ̃i)

19 Ql = W7

∑
i∈V γ

(T)
i

20 Qavg = 1
N

∑N
l=1Ql

A.10 Proof of Lemma 2

Statement: Denote result of OTAP using true Q-functions {Q(n)} asM(N) = {m(1) . . .m(N)}. If
Q-function approximation method has order transferability, thenM(N) =M(N)

θ holds.
Proof. Recall that we say Q-function approximation method has order transferability if
argmaxatk

Qn(stk , atk) = argmaxatk
Qnθ (stk , atk). We prove by induction.

Base case: For n = 0,M(0) = φ =M(0)
θ .

For n > 0, suppose thatM(n) =M(n)
θ holds, i.e. m(j) = m

(j)
θ for 1 ≤ j ≤ n. Then according to

n+ 1th step OTEP operation,
m(n+1) = argmaxmQ

n+1
(
stk ,M(n) ∪ {m}

)
=argmaxmQ

n+1
θ

(
stk ,M(n) ∪ {m}

)
(∵ Order transferability assumption)

= argmaxmQ
n+1
θ

(
stk ,M

(n)
θ ∪ {m}

)
(∵ induction argument)

= m(n+1)
θ .

Therefore,M(n+1) =M(n) ∪ {m(n+1)} =M(n)
θ ∪ {m(n+1)

θ } =M(n+1)
θ .

A.11 Order transferability-enabled auction-based policy (OTAP)

We continue to use the notation introduced in section A.5. Recall that state stk = (Gtk , αtk) where
Gtk = (R∪ Ttk , ERTtk). OTAP finds an assignment at, the edge set of a maximal bipartite matching
in the bipartite graph Gtk , after N = max (|R|, |Tt|) iterations of Bidding and Consensus phases.

Bidding phase. In the nth bidding phase, initially all robots knowM(n−1)
θ , the ordered set of n− 1

robot-task edges in ERTtk determined by the previous n− 1 iterations. An unassigned robot i ignores
all others unassigned and calculates Qnθ (stk ,M

(n−1)
θ ∪ {εRTip }) for each unassigned task p as if

those k robots (robot i together with all robots assigned tasks in the previous n− 1 iterations) only
exist in the future and will serve all remaining tasks. (Here, εRTip ∈ ERTtk is the edge corresponding
to assigning robot i to task j at decision epoch tk.) If task ` has the highest value, robot i bids
{εRTi` , Qnθ (st,M(n−1)

θ ∪ {εRTi` })} to the centralized auctioneer. Since the number of ignored robots
varies at each iteration, transferability of Q-function inference is crucial.

Consensus phase. At nth consensus phase, the centralized auctioneer finds the bid with the best bid
value, say {εRTi∗p∗ , Qnθ (st,M(n−1)

θ ∪{εRTi∗p∗})}. (Here i∗ and p∗ denote the best robot task pair.) Denote

εRTi∗p∗ =: m
(n)
θ . The centralized auctioneer updates the shared ordered setM(n)

θ =M(n−1)
θ ∪m(n)

θ .

These two phases iterate until we reachM(N)
θ = {m(1)

θ , . . . ,m
(N)
θ }. ThisM(N)

θ is chosen as the
joint assignment a∗tk at time step tk. That is, πQθ (stk) = a∗tk . The computational complexity for
computing πQθ is O (|R| |Ttk |) and is only polynomial (See Appendix A.15).

Provable performance bound of OTAP.

Let the true Q-functions for OTAP be {Qn}Nn=1. Denote the outcome of OTAP with these true
Q-functions asM(N) = {m(1), . . . ,m(N)}.

Lemma 2. If the Q-function approximator has order transferability, thenM(N) =M(N)
θ .

13

For any decision epoch tk, letM denote a set of robot-task pairs (a subset of ERTtk). For any robot-
task pair m ∈ ERTtk , define ∆(m | M) := Q|M∪{m}|(stk ,M∪ {m}) − Q|M|(stk ,M) as the the
marginal value (under the true Q-functions) of adding robot-task pair m ∈ ERTtk . Note, we allow
“adding” m ∈ M for mathematical convenience in the subsequent proof. In that case, we have
∆(m | M) = 0, m ∈M.

Theorem 2. Suppose that the Q-function approximation with the parameter value θ exhibits order
transferability. Denote M(N)

θ as the result of OTAP using {Qnθ }
N
n=1 and let M∗ = argmaxatk

Q|atk | (stk , atk). If ∆(m | M) ≥ 0,∀M ⊂ ERTtk ,∀m ∈ ERTtk , and the marginal value of adding one
robot diminishes as the number of robots increases, i.e., ∆(m | M)≤∆(m | N),∀N ⊂M ⊂ ERTtk ,
∀m ∈ ERTtk , then the result of OTAP is at least better than 1− 1/e of an optimal assignment. That is,

QNθ (stk ,M
(N)
θ)≥Q|M∗| (stk ,M∗)(1− 1/e) .

For proofs of Lemma 2 and Theorem 2, see Appendix A.10 and A.13.

A.12 Auction-fitted Q-iteration framework and exploration

Auction-fitted Q-iteration. We incorporate OTAP into a fitted Q-iteration, i.e., we find θ that
empirically minimizesEπQθ ,sk+1∼P ′ [Qθ (sk, ak)− [r (sk, ak) + γQθ (sk+1, πQθ (sk+1))]] . Please
note that this method’s rigorous fixed point analysis is the scope of subsequent future research.

Exploration. How can we conduct exploration in the auction-fitted Q-iteration framework? Un-
fortunately, we cannot use an ε-greedy method since: (i) an arbitrary random deviation in a joint
assignment often induces a catastrophic failure [13], and (ii) the joint assignment space, which is com-
plex and combinatorial, is difficult to explore efficiently with such an arbitrary random exploration
policy. In learning the parameters θ for Qθ (sk, ak), we use the exploration strategy that perturbs the
parameters θ randomly to actively explore the joint assignment space with TAP. While this method
was originally developed for policy-gradient based methods [16], exploration in parameter space is
useful in our auction-fitted Q-iteration since it generates a reasonable combination of assignments.

A.13 Proof of Theorem 2

Statement: Denote N = max (|R|, |Tt|).
Suppose that Q-function approximation method has order transferability. Denote M(N)

θ as
the result of OTAP using {Qnθ } and M∗ as argmaxatk

Q (stk , atk). If 1) the marginal value

of adding one robot is positive, i.e. Q|M|+1(stk ,M ∪ {m}) − Q|M|(stk ,M) ≥ 0 for all
M⊂ ERTt and 2) the marginal value of adding one robot diminishes as the robot number increases,
i.e., Q|M|+1(stk ,M ∪ {m}) − Q|M|(stk ,M) ≤ Q|N |+1(stk ,N ∪ {m}) − Q|N |(stk ,N) for
N ⊂M ⊂ ERTt , for all m ∈ ERTt , then the result of OTAP is at least better than 1− 1/e of optimal
assignment, i.e., QNθ (stk ,M

(N)
θ) ≥ Q|M∗| (stk ,M∗) (1− 1/e) .

Proof. From the assumption 1) that the marginal value of adding one robot is nonnegative, without
loss of generality, we can considerM∗ with |M∗| = N in the further proof procedure. Denote
M∗={m(1)∗,m(2)∗, . . . ,m(n)∗} and denoteM(N)

θ = {m(1)
θ ,m

(2)
θ , . . . ,m

(N)
θ }.

For notation simplicity, define ∆(m | M) =: Q|M∪{m}|(st,M∪ {m})−Q|M|(st,M).

Then the optimal value OPT = QN (stk ,M∗) ≤ Q|M
(n)
θ ∪M

∗|(stk ,M
(n)
θ ∪M∗)

= Qn(stk ,M
(n)
θ) +

∑N
j=1 ∆(m(j)∗ | M(n)

θ ∪ {m(1)∗, · · · ,m(j−1)∗})
≤ Qn(stk ,M

(n)
θ) +

∑N
j=1 ∆(m(j)∗ | M(n)

θ)(∵ condition 2 - decreasing marginal value condition)

≤ Qn(stk ,M
(n)
θ) +

∑N
j=1 ∆(m

(n+1)
θ | M(n)

θ)

(∵ OTAP chooses m(n+1)
θ = argmaxmQ

n+1
θ

(
st,M(n)

θ ∪ {m}
)

and

argmaxmQ
n+1
θ

(
st,M(n)

θ ∪ {m}
)

= argmaxmQ
n
(
st,M(n)

θ ∪ {m}
)

from Lemma 2)

= Qn(stk ,M
(n)
θ) +N∆(m

(n+1)
θ | M(n)

θ).

14

Therefore, ∆(m
(n+1)
θ | M((n))

θ) ≥ 1
N (OPT −Qn(stk ,M

(n)
θ).

Note that OPT − Qn(stk ,M
(n)
θ) denotes current iteration (= nth) outcomeM(n)

θ ’s size of sub-
optimality compared to OPT . Denote OPT −Qn(stk ,M

(n)
θ) =: βn. Then since Q0(stk , φ) = 0,

β0 = OPT . Therefore, we have ∆(m
(n+1)
θ | M((n))

θ) ≥ 1
N βn.

Also, note that ∆(m
(n+1)
θ | M(n)

θ) = Qn+1(st,M(n)
θ ∪ {m(n+1)

θ })−Qn(st,M(n)
θ)

= Qn+1(st,M(n+1)
θ)−Qn(st,M(n)

θ) = (OPT −Qn(st,M(n)
θ)− (OPT −Qn+1(st,M(n+1)

θ))
= βn − βn+1.
Therefore, βn − βn+1 ≥ 1

N βn, i.e., βn+1 ≤ βn
(
1− 1

N

)
.

This implies OPT −QN (stk ,M
(N)
θ) = βN ≤ β0(1− 1

N)N = OPT (1− 1
N)N and thus we get

QN (stk ,M
(N)
θ) = OPT (1− (1− 1

N)N) ∼ OPT (1− 1
e) as N →∞.

A.14 MRRC experiment details.

To generate the task completion times, Dijkstra’s algorithm and dynamic programming were used for
deterministic and stochastic environments, respectively. To minimize artificiality, the simplest MRRC
problem is considered as follows. In the deterministic environment, robots always succeed in their
movement. In the stochastic environment, a robot makes its intended move with a certain probability.
(Cells with a dot: success with 55%, every other direction with 15% each. Cells without a dot: 70%
and 10%, respectively.) A task is considered served when a robot reaches it. We consider two reward
rules: linearly decaying rewards f(age) = max{200− age, 0} and nonlinearly decaying rewards
f(age) = λage with λ = 0.99, where age is the task age when served. The initial age of tasks are
uniformly distributed in the interval [0, 100].

A.15 Scalability analysis

Computational complexity. MRRC can be formulated as a semi-MDP (SMDP) based multi-robot
planning problem (e.g., [15]). This problem’s complexity with R robots and T tasks and maximum
H time horizon is O((R!/T !(R − T)!)H). For example, [15] state that a problem with only 13
task completion times (‘TMA nodes’ in their language) possessed a policy space with cardinality
5.622 ∗ 1017. In our proposed method, this complexity is addressed by a combination of two
complexities: computational complexity and training complexity. For computational complexity of
joint assignment decision at each timestep, it is O(|R||T |3) = O((1)× (2)× (3)× (4) + (5)) where
(1)− (5) are as follows.

(1) # of Q-function computation required in one time-step = O(|R||T |): Shown in section 4.2

(2) # of mean-field inference in one Q-function computation = 2 (constant): Two embed-
ding steps (Distance embedding, Value embedding) each needs one mean-field inference
procedure

(3) # of structure2vec propagation operation in one mean-field inference= O(|T |2): There is
one structure2vec operation from a task to another task and therefore the total number of
operations is |T | × (|T | − 1).

(4) # of neural net computation for each structure2vec propagation operation=C (constant): This
is only dependent on the hyperparameter size of neural network and does not increase as
number of robots or tasks.

(5) # of neural net computation for inference of random PGM=O(|T |2) As an offline stage, we
infer the semi-clique presence probability for every possible directed edge, i.e. from a task
to another task using algorithm introduced in Appendix 6. This algorithm complexity is
O(|T | × (|T | − 1)) = O(|T |2).

Training data efficiency. Training efficiency also is required to obtain scalability. To quantify this we
measured the training time required to achieve 93% optimality. As before, we consider a deterministic
environment with linear rewards and compare with the exact optimum. Table 4 demonstrates that
training time many not necessarily increase with problem size.

15

Table 4: Training complexity (mean of 20 trials of training, linear & deterministic env.)

Linear & Deterministic Testing size : Robot (R) / Task (T)
2R/20T 3R/20T 3R/30T 5R/30T 5R/40T 8R/40T 8R/50T

Performance with full training 98.31 97.50 97.80 95.35 96.99 96.11 96.85
Training for 93 optimality 19261.2 61034.0 99032.7 48675.3 48217.5 45360.0 47244.2

A.16 Code for the experiment

For the entire codes used for experiments, please go to the following Google drive link for the codes.

16

https://drive.google.com/drive/folders/1vUAR7OmNxCi9MYV3Kwo3RuxHBsemZ-rA?usp=sharing

	Introduction
	Multi-robot scheduling problem formulation
	Scheduling by Inferencing with a Random PGM
	Scheduling MRRC with Random structure2vec
	Order transferability of Q-fnction estimation for transferable Q-learning
	Order transferability-enabled auction for scalable computation

	Experiments and results
	Concluding Remarks
	Appendix
	Multi-robot scheduling problem formulation.
	Identical parallel machine scheduling problem (IPMS) with makespan minimization objective
	Formulation
	Experiments

	Background on probabilistic graphical model (PGM) and structure2vec
	Bayesian Network representation
	Designing Q-function estimator having order-transferability
	Proof of Theorem 1.
	Proof of Lemma 1.
	Simple presence probability inference method used for MRRC
	Complete algorithm of section A.5 with task completion time as a random variable
	Proof of Lemma 2
	Order transferability-enabled auction-based policy (OTAP)
	Auction-fitted Q-iteration framework and exploration
	Proof of Theorem 2
	MRRC experiment details.
	Scalability analysis
	Code for the experiment

