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Abstract

Simulation-to-simulation and simulation-to-real world transfer of neural network
models have been a difficult problem. To close the reality gap, prior methods
to simulation-to-real world transfer focused on domain adaptation, decoupling
perception and dynamics and solving each problem separately, and randomization
of agent parameters and environment conditions to expose the learning agent to a
variety of conditions. While these methods provide acceptable performance, the
computational complexity required to capture a large variation of parameters for
comprehensive scenarios on a given task such as autonomous driving or robotic
manipulation is high. Our key contribution is to theoretically prove and empirically
demonstrate that a deep attention convolutional neural network (DACNN) with
specific visual sensor configuration performs as well as training on a dataset
with high domain and parameter variation at lower computational complexity.
Specifically, the attention network weights are learned through policy optimization
to focus on local dependencies that lead to optimal actions, and does not require
tuning in real-world for generalization. Our new architecture adapts perception with
respect to the control objective, resulting in zero-shot learning without pre-training
a perception network. To measure the impact of our new deep network architecture
on domain adaptation, we consider autonomous driving as a use case. We perform
an extensive set of experiments in sim2sim and sim2real scenarios to compare our
approach to several baselines including the current state-of-art models.

Attention networks, image-based visual control, reinforcement learning

1 Introduction

Most of the recent examples in deep reinforcement learning of autonomous control agents utilize
realistic simulation environments to learn various tasks including but not limited to locomotion,
motion planning, and robotic-arm manipulation with limited or no human guidance (see [1] and
references therein). These realistic simulation environments are safe for the agent to experience both
desired and unwanted behavior. On the other hand, in general, a controller learned in a simulation
environment performs poorly in the real world or does not generalize without additional tuning in the
real world.
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There is no single approach for zero-shot reinforcement learning of a robotic controller agent. In [2],
the authors apply domain adaptation at the feature level. In [3] and [4] , the authors used domain
and dynamics randomization, respectively. In [5], the authors propose a new multi-stage RL agent,
DARLA (DisentAngled Representation Learning Agent), which learns to see before learning to act.
More recently, domain adaptation has been studied for robotic manipulators [6–11] in which the
authors use raw (pixel) images as state for deep reinforcement learning.

To achieve zero-shot RL requires addressing the uncertainty, un-modeled dynamics, and perception
challenges across all three components, namely, agent, environment, and interpreter. There are
currently two schools of thought, one focusing on improving dynamics and the other on perception.
We argue that the key to achieving robust zero-shot reinforcement learning requires jointly addressing
uncertainty in dynamics and variability in perception.

We propose a new deep neural network architecture named Deep Attention Convolutional Neural
Network (DACNN). An overview of the steps of our proposed approach is shown in Figure 1. Our
key contribution is that our attention model uniquely captures underlying components in the modern
control theoretic approach, i.e., image-based servo-ing, without the need for separation of perception
and control. The image-based servoing have been succesully applied to robotic control use cases
including but not limited to drones. The recent image-based servo-ing methods use image feature
vectors which are specific transformation of the raw pixels. We prove that our attention model
uniquely captures the image feature vectors, i.e., in image-based visual servo control, via annotation
vectors. Annotation vectors are extracted from a CNN as described in [12]. By defining the image
features as annotation vectors, the full image error is defined in term of the weights of the annotation
vectors. We assume that the annotation vectors have fixed orientation in the inertial frame. This
assumption allows the passivity-like features of the dynamic system to transfer to the full image
error when a spherical camera geometry is used. Therefore, we jointly solve the perception and
control problem via the attention model that results in robust domain adaptation with zero-shot RL. A
complete characterization of the class of systems which can be rendered passive from is beyond the
scope of this paper. However, this class is broad, and encompasses mechanical systems modeled by
Euler-Lagrange equations [13].

Figure 1: The block diagram of our proposed approach using an attention mechanism that preserves
passivity-like features of the dynamic system for optimal motion planning. A complete characteriza-
tion of the class of systems which can be rendered passive from to is beyond the scope of this paper.
However, this class is broad, and encompasses mechanical systems modeled by Euler-Lagrange
equations.

2 Our Approach: Attention Models in Optimal Visual Control

In this section, we describe each constructing block of the overall architecture of our proposed
approach in Figure 1. First, we describe the core of our architecture, attention neural networks.
Second, we describe the underlying assumptions that enable attention networks to perform better
than the current state-of-the art approaches. Finally, we provide how autonomous driving physics
satisfy the assumptions for deep reinforcement learning with attention networks.
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Our hypothesis is that under certain assumptions on the control system and sensor configuration, a
specific type of neural network, i.e., attention network, enables joint perception and stable control
of the system even there are significant changes in the environment such as texture and lighting
that transforms the observation space. There are several formulation of attention networks for
image-captioning and natural language processing. To the best of our knowledge, the attention
mechanism in these applications are used in conjunction with recurrent neural networks. There are
several formulations of attention models in recurrent neural networks [14, 12, 15, 16]. Attention
enables neural networks to "focus" selectively on different parts of the input while generating the
corresponding parts of the output sequence. This selective "focus" for a corresponding input is then
learned through back-propogation.

Our formulation is inspired from the attention model in [14] where the attention-based model can
attend to salient part of an image while generating its caption. Intuitively, attention enables the model
to see what parts of the image to focus on as it generates a caption. It is very much equivalent to how
humans perceive when performing image caption generation or long length machine translation. In
the context of autonomous driving, the vehicle needs to focus on the ques from the road such as white
and yellow lines but not on the entire road, i.e., grey asphalt, unless there is an obstacle or another
vehicle.

Our main goal is to learn the shortest path on an arbitrarily-drawn track using a ground robot or vehicle
as the highest possible speed without going off-the-track, hitting obstacles or other vehicles. We
assume that the ground vehicle control is based only on raw (pixel) image and there is no other sensor
for position or velocity. In the following, first, we consider the image-based control formulation
using construct from the image-based visual servo (IBVS) theory and the kinematic model of our
vehicle as defined in [17]. We provide the necessary conditions required to preserve passivity-like
properties. Second, we consider the full image error for the control problem. We propose that the
image features and full image error is defined in terms of annotation vectors and their corresponding
weights. We show that the proposed formulation guarantees a stabilizing controller. Finally, we
describe the learning task based on attention model.

The image-based only IBVS approach for our ground vehicle problem can be solved if and only
if the image geometry is spherical. In the classical setting, the state of our vehicle is defined as
s = [x, y, ψ, v] where (x, y) is the position of the vehicle on a 2D plane, ψ is the steering angle of
the center of the mass, and v is the velocity of the vehicle in 2D plane. The state transition function is
defined by the discrete-time formulation of the kinematic model in Equations 1-4 as formulated in
[17]:

ẋ = v cos(ψ + β) (1)
ẏ = v sin(ψ + β) (2)

ψ̇ = (v/lr) sin(β) (3)
v̇ = a (4)
β = tan−1 ((lr/L) tan(δf )) (5)

lr is the distance of the center of mass to the rear axle, L is the length of the vehicle, a is the
acceleration, and δf is the steering of the front vehicle1. The proposed kinematic performs at par with
the dynamic model for model predictive control off-road test using actual-size passenger automobiles.
This kinematic model satisfies the passivity property for the control system.

In the classical IBVS formulation, the control state is inferred from the sensor-based observations.
That is, the sensor state is the raw-pixel image and a transformation matrix is used to map observations
into the control state. In our deep reinforcement learning formulation, we consider observations as
the state and the control state transformation is implicitly embedded into the neural network and will
not be inferred directly. The deep reinforcement learning algorithm will infer on the control state
through a reward function by making trial-and-error based decision on the observation space, i.e.,
raw pixel images.

In our and IBVS formulation, the observation state is defined as S ∈ RL where S = [a1, . . .aL] ∈ S
is a matrix and each column ai ∈ RD corresponds to a D-dimensional feature extracted from the
observed image, L and D are finite integers. The geometry of the camera is modeled by its image
surface S relative to its focal point. Therefore, the image feature ai can be written as a function of is

1The rear wheels are fixed and do not steer
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projection Pi onto the image surface S in the body fixed frame. The image feature in our formulation
is the output of the convolutional neural network layers, and the input to the convolutional network
layers is the raw-pixel image.
Theorem 2.1. The passivity-like properties of the body fixed frame dynamics of a rigid object in the
image space are preserved if and only if the image geometry is of a spherical camera.

The proof of Theorem 2.1 is in [18]. Our kinematic equations, Equations 1-4, already exhibits a
simple linear cascade system, i.e., ẋ = vR and v̇ = a where R is a rotation matrix. Since cascade
systems exhibit passivity-like properties, to guarantee that the controlled system inherits passivity-like
properties, we need to show that the gradient of the full image error contains a skew-symmetric matrix
on angular velocities. In the next section, we define the full image error in terms of an attention
network.

Figure 2: The block diagram of the our attention-CNN network.

The overall neural network architecture with the deep attention network for our approach is shown
in Figure 2. Intuitively, the objective of a visual servo algorithm in image space is to match the
observed image to a known “model” image of the target. The target is an image of the environment
with the desired outcome. In the context of autonomous vehicle, a target is an image of the road
where the vehicle is within the white lines and away from obstacles and other vehicles. Our approach
does not require a known model image of the target for controls. However, we need to engineer
a reward function that will indirectly provide the means to discriminate between desired versus
undesired behavior. Therefore, it is necessary to examine the error in the image space. Furthermore,
we hypothesize that our attention network model reduces the image space error compared to naively
feeding image features extracted from CNN layers. The full image error between the observed and
known model image is defined using a combination matrix approach

δ1 := C(ai − a∗i ) (6)

where a∗i are the desired image features and C is the combination matrix that preserve the passivity-
like properties. Assuming that C is full rank, we can rewrite the full image error as a weighted sum
δ1 = Σiαi(ai − a∗i ) where αi ≥ 0. The choice of αi becomes the design component for the control
algorithm. We propose that in the above formulation ai can be chosen as the annotation vectors in a
our modified attention model and αi are the corresponding weights of the annotation vectors. Suppose
that a set of image features, annotation vectors are extracted from a CNN as in [14]. The output of
the attention layer from the annotation vectors corresponds to the features extracted at different image
locations. The extractor produces a finite number L of annotation vectors a = {a1, ...,aL},ai ∈ RD

where D is a finite integer. These annotation vectors form the state space of our MDP. We define a
context vector ẑ where φ is a weighted sum,

ẑ =
∑
i

αiai (7)

For each location i, the mechanism generates a positive weight αi which can be interpreted either as
the probability that location i is the right place to focus for producing the control action (the "hard"
but stochastic attention mechanism), or as the relative importance to give to location i in weighted
sum of the the ai vectors. The weight αi of each annotation vector ai is computed by an attention
model fatt. The weight αi is calculated by the softmax function

αti = exp(eti)/Σ
L
k exp(etk) (8)
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where

eti = fatt(ai,ht−1), (9)

ht−1 are hidden state vectors from the previous LSTM cell and fatt an attention model. In the
literature, there are multiple formulations of the fatt model, i.e., additive and multiplicative. In the
following, we describe our formulation of fatt based on additive models

The only input to the attention model fatt is the annotation vectors. Additive attention (or multi-
layer perceptron(MLP) attention) and multiplicative attention (or dot-product attention) are the most
commonly used attention mechanisms. They share the same and unified form of attention introduced
above, but are different in how they compute the function fatt. We use a modified MLP attention
in our network to selectively pick the ai vector for computing the eti , and not have any contextual
vector for computing the attention weights. Since the annotation weights αi are output of a softmax
function, αi are positive. Therefore, we preserve the combination matrix C in Equation 6 to be full
rank. This property also ensures that we can stabilize the system if the velocity is available as a
control input, i.e., kinematic control. This condition is satisfied by our design.

While the visual features used as state provide means for robustness to camera and target calibration
errors, the rigid-body dynamics of the camera ego-motion are highly coupled when expressed as target
motion in the image plane. Therefore, a direct adaptive control approach provide better results. We
consider a general formulation of the ground robot navigation as Markov decision process (MDP) and
use a vanilla clipped proximate policy optimization algorithm[19]. In standard policy optimization,
the policy to be learned is parametrized by the weights and bias parameters of the underlying neural
network. In our case, the underlying neural network contains an attention mechanism in addition to
more commonly used convolutional and dense layers. Therefore, the policy optimization solves for
the full image error in the visual space while learning the optimal actions for navigation.

3 Conclusion and Future Work

Most traditional approaches to control robotic agents rely on extracting features from image or using
non-image based sensors for state measurements. The optimal control algorithms that utilize pixel as
a state typically need a simulation environment. The control policies trained in a specific simulation
environment perform poorly in other environments with the same hardware model configuration. We
have tackled two critical problems in our work on domain adaptation. First, we provided a theoretical
foundation on the conditions under which joint perception and control will perform as well as the
current state-of-the-art or better at lower computational complexity. Second, we implemented our
approach for a mobile robot and empirically demonstrated the improvement.

We have proposed a new architecture (DACNN) that strives to attain joint perception and control by
learning to focus through the lens of the CNN layers, and achieve zero-shot reinforcement learning,
converging to an optimal policy that’s transferable across perceptive differences in the environment.
The attention model learns to capture the part of the image relevant to driving while the spherical
geometry under which the image captures the real-time observation guarantees stable control under
the passivity assumption.

We have demonstrated that additive attention can capture the focus required for optimal control
theoretically in Section 2 and empirically in the context of autonomous-driving in Section 4. This is
achieved by designing the context vector in the form of the full error in visual space with respect to
the desired visual features. We empirically prove over comprehensive and targeted experiments in
simulation and real world that this new mechanism provides a robust domain transfer performance
across different textures, colors, and lighting. We have shown that our attention network performs at
par or better compared to the current state-of-the-art method based on variational auto-encoders at
lower computational complexity and the need to design extensive set of experiments with domain
variation. Future work should also look to explore other attention mechanisms like self-attention [20],
deep siamese attention [21] to have stronger capabilities to teach focus to the encoded features of our
network.
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4 Supplementary Material

4.1 Experiments and Results

In this section, we summarize our experimental results on sim2sim and sim2real. Our main conclusion
is two-folds: 1) DACNN provides equivalent or better performance on domain transfer tasks with
texture and light variation in the environment and 2) DACNN converges sooner in training compared
to deeper neural networks with better performance, i.e., higher total reward, resulting in lower
compute cost without degradation. The faster training is achieved by 1) not randomizing the model
and environment conditions and 2) allowing the network to focus on jointly optimizing for perception
and dynamics. There is no pre-training stage for learning the latent space representation for perception.
An in-depth discussion on our experiments and description of baselines adopted are included in the
rest of the paper.

4.1.1 Design of Experiments

We conducted two sets of experiments with increasing complexity:

Task I - Time trial: For this task, the robocar is required to complete a given racing track as fast
as possible without going off the track. The off-track condition is defined as when all the
wheels of the car outside of the race track.

Task II - Multi-car racing: For this task, the robocar is required to complete a given racing track as
possible without crashing into two or more bot cars. The crash condition is defined as when
the robocar is in the close vicnity of a bot car. The bot car is controlled by the simulation
with no learning capability and models the worst case scenario by frequently changing the
lanes to block the learner robocar. The number of the bot cars on the track is based on the
length of the track.

We consider two sets of domain adaptation tasks in sim2sim and sim2real experiments. First, we
use unseen color, texture, and lighting conditions in the evaluation phase and real track environment
respectively but we keep the track shape the same in all experiments. Second, we modify the track
shape as well as the color and texture.

We consider two baselines in both sim2sim and sim2real transfer experiments. First baseline has
vanilla CNN layers to extract features without our attention mechanism. Second baseline is based
on the DARLA approach where we use DARLA’s β-VAE neural network to learn a latent state
representation and then use the same output layers from our approach to learn the control task. Our
implementation of DARLA is as described in [22], and applied to the autonomous vehicle use case.

We trained two baseline models with no domain adaptation, two models with DARLA using different
β values, two models with DACNN using different number of units, a total of 6 models. We used a
vanilla policy optimization implementation and categorical exploration from a widely popular tool
kit. We created an interface to our simulation environment which is open-source2.

We performed evaluations on sim2sim and sim2real with textural variants - carpet, wood, concrete,
and random lighting effects as seen in Figure 3 with five or more replications. Then, we changed the
reward function from penalizing deviations from following center yellow, dotted line to penalizing
crossing white lines on the inner and outer edge of the track, and repeated the experiments.

4.1.2 Results: Task I - Time-trial

In total, we have more than 100+ and 20+ tests for sim2sim and sim2real respectively, to reach
a statistically significant conclusion. Currently, we have several hundred hours of autonomous
driving image, time-series, and event logs from the point-of-view of the car3. In the simulation, we
note that the baseline model was never able to finish on the concrete track. However the attention
based model finished successfully on all surfaces and all of its converged iterations had significantly
higher (80%+) completion rates. One interesting observation is that our deeper DACNN architecture
achieved the highest cumulative reward. We anticipate that the deeper network implicitly extracts the
non-linearities from vision-based controls implicitly.

2https://github.com/aws-samples/aws-deepracer-workshops/tree/master/Advanced%20workshops/
3See racing competition links at https://driving-olympics.ai/
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Figure 3: The camera capture from robocar’s perspective for testing varying sim2real environments.

We summarize our sim2real experiment results in Table 1. In the real world, we observed DARLA
and DACNN performed better than the baselines under lighting variations4. Baseline I uses the
probabilistic action space described for “racetrack problem” in [23] to account for uncertainty in
dynamics, while Baseline II uses deterministic action decisions. We consider two types of DARLA
models, one uses data augmentation and the other does not, when training the learn to see model. The
data augmentation is performed by various perturbations such as shifting the camera image or adding
Gaussian noise. DACNN models use a single layer and two-layer attention layers after vanilla input
CNN layers.

Table 1: Summary of results for simulation-to-simulation and simulation-to-real experiments.
Simulation-to-Simulation Simulation-to-Reality

Number
of itera-
tions to
con-
verge

Mean
reward
at con-
vergence

Success
rate for
textures

Success
rate for
lighting

Success
rate for
focused
light

Success
rate for
multi
non-
focused

Baseline I (uncer-
tainty) [23]

14 350 Fails all Fails 0 0

Baseline II (no adap-
tation)

24 800 Fails on
concrete

Success 40% 33%

DARLA (augmenta-
tion)

9 700 Success
all

Success N/A N/A

DARLA (no aug-
mentation)

9 600 Success
all

Success 33% 66%

DACNN (shallow) 12 900 Success
all

Success 66% 50%

DACNN (deep) 11 2200 Success
all

Success in-
progress

in-
progress

4.1.3 Results: Task II - Multi-car Racing

While our results in this task are preliminary, we observed that the reduced computational complexity
transferred to the new task of avoiding moving objects. We used a different length and width track
to accommodate up to three robocars without crashing into each other. For the same simulation
configuration using five and three bot cars changing lanes at specific intervals, the DACNN model
converged faster than the deep neural network but slower than the shallow network as shown in
Figure 4.1.3 and Figure ??, respectively. However, the total reward achieved for the DACNN was

4A video of our findings from these experiments are attached to our submission.
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Training entropy and total reward using 5 bot
cars where (left) DACNN model with three
CNN layers, (center) deep neural network
model with five CNN layers but without

attention, and (right) shallow neural network
with three CNN layer.

Training entropy and total reward using 3 bot
cars where (left) DACNN model with three
CNN layers, (center) deep neural network
model with five CNN layers but without

attention, and (right) shallow neural network
with three CNN layer

higher than the shallow one and only slightly higher than the deeper network. The evaluation results
on each model during training provided additional insight on the robustness of the DACNN model
compared to the deeper network.

Figure 4: The evaluation of models with five bot cars on the track same as the training where (top)
DACNN model with three CNN layers plots of evaluation and (bottom) deep neural network with
three CNN layer but without attention model plots of evaluation.

Next, we consider evaluation of the five-bot car model on the same track as the training and of the
three-bot model on a more complicated track shape with varying textures. The evaluation results for
the five-bot car model are shown in Figure 4. We provide the statistics for mean progress over 15
evaluations across each checkpoint model from the training job in the first column of Figure 4. The
DACNN model starts achieving more than 70% progress around the track early on. The variation
across evaluations of the same model is shown in the second column. The DACNN model has tighter
variation plots. Similarly for the number of cars passed during evaluation shown in the fourth column,
the DACNN model consistently performs more than 30 passes after iteration 40. The evaluation of
the three-bot car model on a track with a more complicated track shape and several texture changes
including concrete, carpet, and wood revealed the limits of both the DACNN and deeper network
models. None of the models were able to finish the track yet the DACNN model was able to complete
more full laps than the deeper model with higher number of passes.

4.1.4 Discussion

We use Gradient-weighted Class Activation Mapping (Grad-CAM) in [24] to visualize the impact
of our baseline versus proposed approach on the image space prior to the output layers for control.
Grad-CAM applies to CNNs used in reinforcement learning, without any architectural changes or
re-training. Grad-CAM uses the gradients of any target concept, flowing into the final convolutional
layer to produce a coarse localization map highlighting the important regions in the image for
predicting the concept.

In Figure 5, we compared our baseline and basic DACNN model on the same image collected from
the real world through the robocar’s perspective. The warmer colors (yellow-red) correspond to focus
areas where cooler colors (blue-purple) correspond to ignored areas. It is clear that the DACNN
learns to focus on the track and not distracted by objects and surfaces outside the track. Note that
both models are saved at the same iteration so that we can observe whether attention outperforms the
baseline at same computational training step.
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Figure 5: (Left) Baseline model on the real-world data from the robocar’s perspective is distracted
by objects and surfaces outside of the racing track. (Right) DACNN focuses on the current and next
actions without distractions to stay near the center of the track.

Figure 6 compare the rewards accumulating for DARLA (top left) and our attention model (bottom
left) during training with mini-batch size of 64. The reward function incentives for staying close to
the yellow, dotted-line and higher speeds while penalizing for getting out of the track ans steering too
frequently. For our basic DACNN models, we observe that the algorithm starts to converge around
the same time as DARLA after accounting to DARLA’s pre-training period. Therefore, the training
performance is maintained. The impact of changing the batch size from 64 to 32 for 64 unit (top
right) attention versus a granular 256 unit (bottom right) attention model is shown on the right in
Figure 6. The increased batch size results in faster learning.

Figure 6: (Top Left) The rewards accumulated during the training of the DARLA agent and (Bottom
Left) the rewards accumulated during the training of our attention model with the clipped proximal
policy optimization [19] and categorical. The impact of hyper-parameter variation, i.e., batch size
and attention units, on learning is shown on the right.

4.2 Related Work

Vision-based servo control. In this paper, we consider image-based optimal control which is an
extension of image-based visual servo (IBVS) control. Classic IBVS was developed for serial-link
robotic manipulators [25, 26] and aims to control the dynamics of features in the image plane directly
[27, 28]. More recent work on visual servoing focused on unmanned aerial vehicles (see [29] and
reference therein). Our work differs from visual servoing most commonly used in unmanned aerial
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vehicles because we do not have a separate motion planning module. Our work is most similar to
recent work on robotic manipulators [6, 7] in which the authors use raw (pixel) images as state for
deep reinforcement learning. IBVS methods offer advantages in robustness to camera and target
calibration errors, reduced computational complexity. One caveat of the classical IBVS is that it is
necessary to determine the depth of each visual feature used in the image error criterion independently
from the control algorithm. One of the approaches to overcome this issue is to use adaptive control,
hence, the motivation to use reinforcement learning as a direct adaptive control method.

Domain Adaptation for Robot Learning. In domain adaptation literature for robot learning, our
approach is comparable to [5] where the authors propose a new multi-stage RL agent, DARLA
(DisentAngled Representation Learning Agent), which learns to see before learning to act. In
our approach, we do not separate perception from dynamics but our intuition to create a latent
attention space for dynamics is a common theme. Our approach differs from recent work on robotic
manipulators because the state is based on image only and not augmented with other control state
information such as position. Moreover, the use of attention network to create a latent space is new.
In [2], the authors apply domain adaptation at the feature level. In [3] and [4], the authors use domain
and dynamics randomization, respectively.

Attention Mechanisms in Reinforcement Learning. Attention models were applied with remark-
able success to complex visual tasks such as image captioning [14] and machine translation [12].
However, attention models have mostly been applied to recurrent neural networks and not for optimal
visual-servoing tasks. In [30] and [31], the authors use a recurrent neural network (RNN) which
processes inputs sequentially and incrementally combines information to build up a dynamic internal
representation of the scene or environment. We hypothesize that convolutional neural network (CNN)
layers can capture local dependencies needed to create an approximate model for the optimal control
task. Instead, our approach passes images sampled from a scene through multiple CNN layers prior
to the attention network, hence, has the additional advantage of invariance to lighting and texture
inherent in CNNs [32]. In other previous attempts to integrate attention with RL, the authors have
largely used hand-crafted features as inputs to the attention model [33]. The hand-crafted features
require a large number of hyper-parameters and are not invariant to lighting and texture. Our CNN-
based attention network overcomes these challenges in lighting and texture. While it is possible to
segment focus areas separately as described in [34], the delay caused by the model inference is too
large to construct a stable controller.
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