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Abstract

The goal of imitation learning (IL) is to learn a good policy from high-quality
demonstrations. However, the quality of demonstrations in reality can be diverse,
since it is easier and cheaper to collect demonstrations from a mix of experts and
amateurs. IL in such situations can be challenging, especially when the level
of demonstrators’ expertise is unknown. We propose a new IL paradigm called
Variational Imitation Learning with Diverse-quality demonstrations (VILD), where
we explicitly model the level of demonstrators’ expertise with a probabilistic
graphical model and estimate it along with a reward function. We show that a naive
estimation approach is not suitable to large state and action spaces, and fix this
issue by using a variational approach that can be easily implemented using existing
reinforcement-learning methods. Experiments on continuous-control benchmarks
and real-world crowdsourced demonstrations denote that VILD outperforms state-
of-the-art methods. Our work enables scalable and data-efficient IL under more
realistic settings than before.

1 Introduction

The goal of sequential decision making is to learn a policy that makes good decisions [Puterman,
1994]. As an important branch of sequential decision making, Imitation learning (IL) [Russell, 1998,
Schaal, 1999] aims to learn such a policy from demonstrations (i.e., sequences of decisions) collected
from experts. However, high-quality demonstrations can be difficult to obtain in reality, since such
experts may not always be available and sometimes are too costly [Osa et al., 2018]. This is especially
true when the quality of decisions depends on specific domain-knowledge not typically available to
amateurs; e.g., in applications such as the game of Go [Silver et al., 2016], robot control [Osa et al.,
2018], and autonomous driving [Silver et al., 2012].

In practice, demonstrations are often diverse in quality, since it is cheaper to collect them from mixed
demonstrators, containing both the experts and amateurs [Audiffren et al., 2015]. Unfortunately, IL
in such settings tends to perform poorly since low-quality demonstrations often negatively affect the
performance [Shiarlis et al., 2016, Lee et al., 2016]. For example, demonstrations for robotics can be
cheaply collected via a robot simulation [Mandlekar et al., 2018], but demonstrations from amateurs
may cause damages to the robot which is catastrophic in the real-world [Osa et al., 2018]. Similarly,
demonstrations for autonomous driving can be collected from drivers in public roads [Fridman et al.,
2017], but these demonstrations also include demonstrations that cause traffic accidents.

In this paper, we consider a realistic setting of IL where only diverse-quality demonstrations are
available, while the level of demonstrator’s expertise is absent. To tackle this challenging setting, we
propose a new method called Variational Imitation Learning with Diverse-quality demonstrations
(VILD). The central idea of VILD is to model the level of expertise via a probabilistic graphical model
and learn it along with a reward function that represents an intention of experts’ decision making. To
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Figure 1: Graphical models describe expert demonstrations and diverse-quality demonstrations.
Shaded and unshaded nodes indicate observed and unobserved random variables, respectively. Plate
notations indicate that the sampling process is repeated for N times. st P S is a state with transition
densities ppst`1|st,atq, at P A is an action with density π‹pat|stq, ut P A is a noisy action with
density pput|st,at, kq, and k P t1, . . . ,Ku is an identification number with distribution ppkq.

scale up our model for large state and action spaces, we leverage the variational approach [Jordan
et al., 1999], which can be implemented using reinforcement learning (RL) [Sutton and Barto, 1998].
To further improve data-efficiency when learning the reward function, we utilize importance sampling
to re-weight a sampling distribution according to the estimated level of expertise. Experiments on
continuous-control benchmarks and real-world demonstrations denote that VILD is robust against
diverse-quality demonstrations and outperforms existing methods significantly. These results show
that VILD is a scalable and data-efficient method for realistic settings of IL.

2 IL from diverse-quality demonstrations and its challenge
Imitation learning. One of limitations of RL is that it relies on a reward function which may be
unavailable in practice. To address the above limitation, imitation learning (IL) was proposed [Schaal,
1999, Ng and Russell, 2000]. IL aims to learn an optimal policy from demonstrations that encode
information about the optimal policy. A common assumption in IL is that, demonstrations are
collected byK ě 1 experts who execute actions at drawn from the optimal policy π‹pat|stq for every
states st. Under this assumption, we regard that these expert demonstrations are drawn independently
from a probability density p‹ps1:T ,a1:T , kq “ ppkqp1ps1qΠ

T
t“1ppst`1|st,atqπ

‹pat|stq, as shown in
Figure 1(a). We note that k may be safely omitted, since all demonstrators are assumed to be experts.

IL has shown great successes in benchmark settings [Ho and Ermon, 2016, Fu et al., 2018]. However,
practical applications of IL in the real-world is relatively few [Schroecker et al., 2019]. One of the
main reasons is that most IL methods aim to learn with expert demonstrations. In practice, such
demonstrations are often too costly to obtain due to a limited number of experts.

New setting: Diverse-quality demonstrations. To improve practicality, we consider a new prob-
lem called IL with diverse-quality demonstrations, where demonstrations are collected from demon-
strators with different level of expertise. The graphical model in Figure 1(b) depicts the process of
collecting such demonstrations fromK ą 1 demonstrators. Formally, we select the k-th demonstrator
for demonstrations according to a probability distribution ppkq. After selecting k, for each time step
t, the k-th demonstrator observes state st and samples action at using the optimal policy π‹pat|stq.
However, the demonstrator may not execute at in the MDP if this demonstrator is not expertised.
Instead, he/she may sample an action ut P A with another probability density pput|st,at, kq and
execute it. Then, the next state st`1 is observed with a probability density ppst`1|st,utq and the
demonstrator continues making decision until time step T . We repeat this process for N times
to collect a diverse-quality demonstration dataset Dd “ tps1:T ,u1:T , kqnu

N
n“1. These demon-

strations are regarded to be drawn independently from a probability density pdps1:T ,u1:T , kq “

ppkqpps1q
śT

t“1 p1pst`1|st,utq
ş

A π
‹pat|stqpput|st,at, kqdat. Since demonstrators may be ama-

teurs, divere-quality demonstrations can be collected much more cheaply when compared to the
expert demonstrations. The probability density pput|st,at, kq can be regarded as a noisy policy of
the k-th demonstrator.

The deficiency of existing methods. We conjecture that existing IL methods are not suitable to
learn with diverse-quality demonstrations according to pd. Specifically, these methods always treat
observed demonstrations as if they were drawn from p‹. By comparing p‹ and pd, we can see that ex-
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isting methods would learn πput|stq such that πput|stq « ΣK
k“1ppkq

ş

A π
‹pat|stqpput|st,at, kqdat.

In other words, they learn a policy that averages over decisions of all demonstrators. This would be
problematic when amateurs are present, as averaged decisions of all demonstrators would be highly
different from those of all experts. Worse yet, state distributions of amateurs and experts tend to be
highly different, which often leads to the unstable learning: The learned policy oscillated between
well-performed policy and poorly-performed policy. For these reasons, we believe that existing
methods tend to learn a policy that achieves average performances, and are not suitable for handling
the setting of diverse-quality demonstrations.

3 VILD: A robust method for diverse-quality demonstrations

Our model is based on a model of maximum entropy IRL (MaxEnt-IRL) [Ziebart et al., 2010]:
pφps1:T ,a1:T q 9 pps1qΠ

T
t“1p1pst`1|st,atq expprφpst,atqq. Based on this model, we propose

to learn the reward function and the level of expertise by a model pφ,ωps1:T ,u1:T , kq “

ppkqp1ps1qΠ
T
t“1ppst`1|st,utq

ş

A expprφpst,atqqpωput|st,at, kqdat{Zφ,ω , where φ and ω are pa-
rameters and Zφ,ω is the normalization term. To learn these parameters, we minimize the KL
divergence from the data distribution to the model: KLppdps1:T ,u1:T , kq||pφ,ωps1:T ,u1:T , kqq.
By rearranging and ignoring constant terms, minimizing this KL divergence is equiva-
lent to solving an optimization problem maxφ,ω fpφ,ωq ´ gpφ,ωq, where fpφ,ωq “

Epdps1:T ,u1:T ,kqrΣ
T
t“1 logp

ş

A expprφpst,atqqpωput|st,at, kqdatqs and gpφ,ωq “ logZφ,ω. To
solve this optimization, we need to compute the integrals over both state space S and action space A.
Computing these integrals is feasible for small state and action spaces, but is infeasible for large state
and action spaces. To scale up our model to tasks with large state and action spaces, we leverage a
variational approach which aims to lower-bound an integral by an expectation [Jordan et al., 1999].

Since we cannot lower-bound fpφ,ωq´gpφ,ωq directly, we propose to separately lower-bound f and
g. Specifically, let lφ,ωpst,at,ut, kq “ rφpst,atq ` log pωput|st,at, kq, by using a variational dis-
tribution qψpat|st,ut, kq with parameter ψ, we obtain an inequality fpφ,ωq ě Fpφ,ω,ψq, where
Fpφ,ω,ψq “ Epdps1:T ,u1:T ,kqrΣ

T
t“1Eqψpat|st,ut,kqrlφ,ωpst,at,ut, kq ´ log qψpat|st,ut, kqss. It is

trivial to verify that the equality fpφ,ωq “ maxψ Fpφ,ω,ψq holds [Murphy, 2013]. Meanwhile, by
using a variational distribution qθpat,ut|st, kq with parameter θ, we obtain an inequality gpφ,ωq ě
Gpφ,ω,θq, where Gpφ,ω,θq “ E

rqθps1:T ,u1:T ,a1:T ,kqrΣ
T
t“1lφ,ωpst,at,ut, kq´ log qθpat,ut|st, kqs.

The lower-bound G resembles the maximum entropy RL (MaxEnt-RL) [Ziebart et al., 2010], and it
can be shown that an equality gpφ,ωq “ maxθ Gpφ,ω,θq holds. By using these lower-bounds, we
have that maxφ,ω fpφ,ωq ´ gpφ,ωq “ maxφ,ω,ψ minθ Fpφ,ω,ψq ´ Gpφ,ω,θq. VILD learns
the reward and expertise parameters by solving this max-min optimization problem.

We proceed by assuming that qθpat,ut|st, kq “ qθpat|stqN put|at,Σq and pωput|st,at, kq “
N put|at,Cωpkqq. Under these assumptions, VILD solves maxφ,ω,ψ minθHpφ,ω,ψ,θq, where

Hpφ,ω,ψ,θq “ Epdps1:T ,u1:T ,kq

”

řT
t“1Eqψpat|st,ut,kq

”

rφpst,atq ´
1
2}ut ´ at}

2
C´1
ω pkq

ı

`Hpqψq
ı

´ E
rqθps1:T ,a1:T q

”

řT
t“1rφpst,atq ´ log qθpat|stq

ı

` TEppkq

“

tracepC´1
ω pkqΣq

‰

{2.

Here, rqθps1:T ,a1:T q “ p1ps1qΠ
T
t“1

ş

R ppst`1|st,at ` εtqN pεt|0,Σqdεtqθpat|stq is a noisy trajec-
tory density and Hpqψq “ ´Eqψpat|st,ut,kq rlog qψpat|st,ut, kqs is the Shannon entropy. Mini-
mizing H w.r.t. θ resembles solving a MaxEnt-RL problem, except that trajectories are collected
according to the noisy trajectory density. Therefore, this minimization problem can be implemented
by existing RL methods, and qθpat|stq can be regarded as an approximation of the optimal policy
with reward function rφpst,atq. This policy imitates the optimal policy π‹, which is the goal of IL.
To improve the convergence rate of VILD when updating the reward parameter φ, we use importance
sampling (IS). A pseudo-code and implementation details of VILD are provided in the appendix.

4 Experiments

We evaluate VILD against existing IL methods on Mujoco benchmark tasks and a robosuite reaching
task [Fan et al., 2018]. For benchmarks, we use pre-trained RL agents as optimal policies and
generate demonstrations by adding noises to actions. For robosuite, we use real-world crowdsourced
demonstrations from Mandlekar et al. [2018]. More details of experiments are given in Appendix C.

3



0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Transition samples 1e6

0

1

2

3

4

5

Cu
m

ul
at

iv
e 

re
wa

rd
s

1e1 Robosuite_reacher (TRPO)
VILD (with IS)
AIRL
GAIL

MaxEnt-IRL
InfoGAIL
InfoGAIL (best context)

Figure 2: Performance of VILD with IS and
baseline methods for the robosuite reaching task.
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Figure 3: Performance of InfoGAIL with difffer-
ent contexts z for the robosuite reaching task.

Figure 4: An example of trajectory generated by VILD in the robosuite reaching task. The goal is to
control the robot’s end-effector to reach the red object. The value of reward function (for performance
evaluation) is inverse proportion to the distance between the end-effector and the red object.

Results on Mujoco benchmarks. Figure 6 in Appendix D shows the performance of VILD on
Mujoco benchmark tasks. Clearly, VILD with IS significantly outperforms existing methods and
quickly learns the optimal policies. On the other hand, existing methods perform very poorly and learn
policy with averaged performance. This result supports our claim that low-quality demonstrations
negatively affect the performance of existing IL methods.

Results on robosuite reacher. Figure 2 shows the performance of VILD on the robosuite reaching
task. It can be seen that VILD performs better than GAIL, AIRL, and MaxEnt-IRL. VILD also
performs better than InfoGAIL in terms of the final performance; InfoGAIL learns faster in the early
stage of learning, but its performance saturates and VILD eventually outperforms InfoGAIL. These
experimental results show that VILD is more robust against real-world demonstrations with diverse-
quality when compared to existing state-of-the-art methods. An example of trajectory generated by
VILD’s policy is shown in Figure 4.

Figure 3 shows the performance of InfoGAIL with different context variables z [Li et al., 2017]. We
can see that InfoGAIL performs well when the policy is conditioned on specific contexts, e.g., z “ 7.
Indeed, the best context during testing can improve the performance of InfoGAIL. The effectiveness
of such an approach is demonstrated in Figure 2, where InfoGAIL (best context) performs very
well. However, InfoGAIL (best context) is less practical than VILD, since choosing the best context
requires an expert to evaluate the performance of all contexts. In contrast, the performance of VILD
does not depend on contexts, since VILD does not learn a context-dependent policy. Moreover, the
performance of InfoGAIL (best context) is quite unstable, and it is still outperformed by VILD in
terms of the final performance.

5 Conclusion

In this paper, we explored a practical setting of IL where demonstrations have diverse-quality. We
proposed a robust method called VILD, which learns both the reward function and the level of
demonstrator’s expertise by using the variational approach. Empirical results demonstrated that our
work enables scalable and data-efficient IL under this practical setting.
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A Derivations

This section derives the lower-bounds of fpφ,ωq and gpφ,ωq presented in the paper. We also derive
the objective function Hpφ,ω,ψ,θq of VILD.

A.1 Lower-bound of f

Let lφ,ωpst,at,ut, kq “ rφpst,atq ` log pωput|st,at, kq, we have that fpφ,ωq “

Epdps1:T ,u1:T |kqppkq

”

řT
t“1 ftpφ,ωq

ı

, where ftpφ,ωq “ log
ş

A exp plφ,ωpst,at,ut, kqqdat. By
using a variational distribution qψpat|st,ut, kq with parameter ψ, we can bound ftpφ,ωq from
below by using the Jensen inequality as follows:

ftpφ,ωq “ log

ˆ
ż

A
exp plφ,ωpst,at,ut, kqq

qψpat|st,ut, kq

qψpat|st,ut, kq
dat

˙

ě

ż

A
qψpat|st,ut, kq log

ˆ

exp plφ,ωpst,at,ut, kqq
1

qψpat|st,ut, kq

˙

dat

“ Eqψpat|st,ut,kq rlφ,ωpst,at,ut, kq ´ log qψpat|st,ut, kqs

“ Ftpφ,ω,ψq. (1)

Then, by using the linearity of expectation, we obtain the lower-bound of fpφ,ωq as follows:

fpφ,ωq ě Epdps1:T ,u1:T |kqppkq

”

řT
t“1Ftpφ,ω,ψq

ı

“ Epdps1:T ,u1:T |kqppkq

”

řT
t“1Eqψpat|st,ut,kq rlφ,ωpst,at,ut, kq ´ log qψpat|st,ut, kqs

ı

“ Fpφ,ω,ψq. (2)

To verify that fpφ,ωq “ maxψ Fpφ,ω,ψq, we maximize Ftpφ,ω,ψqw.r.t. qψ under the constraint
that qψ is a valid probability density, i.e., qψpat|st,ut, kq ą 0 and

ş

A qψpat|st,ut, kqdat “ 1. By
setting the derivative of Ftpφ,ω,ψq w.r.t. qψ to zero, we obtain

qψpat|st,ut, kq “ exp plφ,ωpst,at,ut, kq ´ 1q

“
exp plφ,ωpst,at,ut, kqq

ş

A exp plφ,ωpst,at,ut, kqq dat
,

where the last line follows from the constraint
ş

A qψpat|st,ut, kqdat “ 1. To show that this is indeed
the maximizer, we substitute qψ‹pat|st,ut, kq “

expplpst,at,ut,kqq
ş

A expplpst,at,ut,kqqdat
into Ftpφ,ω,ψq:

Ftpφ,ω,ψ
‹
q “ Eq‹ψpat|st,ut,kq

rlφ,ωpst,at,ut, kq ´ log qψ‹pat|st,ut, kqs

“ log

ˆ
ż

A
exp plφ,ωpst,at,ut, kqq dat

˙

.

This equality verifies that ftpφ,ωq “ maxψ Ftpφ,ω,ψq. Finally, by using the linearity of expecta-
tion, we have that fpφ,ωq “ maxψ Fpφ,ω,ψq.

A.2 Lower-bound of g

Next, we derive the lower-bound of gpφ,ωq presented in the paper. Recall that the function gpφ,ωq “
logZφ,ω is

gpφ,ωq “ log

¨

˚

˝

K
ÿ

k“1

ppkq

ż

¨ ¨ ¨

ż

pSˆAˆAqT

p1ps1q
T
ź

t“1

ppst`1|st,utq exp plpst,at,ut, kqqds1:T du1:T da1:T

˛

‹

‚

.

We use the structure variational approach [Hoffman and Blei, 2015], where the key idea is to pre-
define conditional dependency to ease computation. Specifically, we use a variational distribution
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qθpat,ut|st, kq with parameter θ and define dependencies between states according to the transition
probability of an MDP. With this variational distribution, we lower-bound g as follows:

gpφ,ωq “ log

˜

K
ÿ

k“1

ppkq

ż

¨ ¨ ¨

ż

pSˆAˆAqT

p1ps1q
T
ź

t“1

ppst`1|st,utq exp plφ,ωpst,at,ut, kqq

ˆ
qθpat,ut|st, kq

qθpat,ut|st, kq
ds1:T du1:T da1:T

¸

ě E
rqθps1:T ,u1:T ,a1:T ,kq

«

T
ÿ

t“1

lφ,ωpst,at,ut, kq ´ log qθpat,ut|st, kq

ff

“ Gpφ,ω,θq, (3)

where rqθps1:T ,u1:T ,a1:T , kq “ ppkqp1ps1qΠ
T
t“1ppst`1|st,utqqθpat,ut|st, kq. The optimal

variational distribution qθ‹pat,ut|st, kq can be founded by maximizing Gpφ,ω,θq w.r.t. qθ.
Solving this maximization problem is identical to solving a maximum entropy RL (MaxEnt-
RL) problem [Ziebart et al., 2010] for an MDP defined by a tuple M “ pS ˆ N`,A ˆ

A, pps1, |s,uqIk“k1 , p1ps1qppk1q, lφ,ωps,a,u, kqq. Specifically, this MDP is defined with a state
variable pst, ktq P S ˆ N, an action variable pat,utq P A ˆ A, a transition probability density
ppst`1, |st,utqIkt“kt`1

, an initial state density p1ps1qppk1q, and a reward function lφ,ωpst,at,ut, kq.
Here, Ia“b is the indicator function which equals to 1 if a “ b and 0 otherwise. By adopt-
ing the optimality results of MaxEnt-RL [Ziebart et al., 2010, Haarnoja et al., 2018], we have
gpφ,ωq “ maxθ Gpφ,ω,θq, where the optimal variational distribution is

qθ‹pat,ut|st, kq “ exppQpst, k,at,utq ´ V pst, kqq. (4)
The functions Q and V are soft-value functions defined as

Qpst, k,at,utq “ lφ,ωpst,at,ut, kq ` Eppst`1|st,utq rV pst`1, kqs , (5)

V pst, kq “ log

ĳ

AˆA

exp pQpst, k,at,utqqdatdut. (6)

A.3 Objective function H of VILD

This section derives the objective function Hpφ,ω,ψ,θq from Fpφ,ω,ψq ´ Gpφ,ω,θq. Specif-
ically, we substitute the models pωput|st,at, kq “ N put|at,Cωpkqq and qθpat,ut|st, kq “
qθpat|stqN put|at,Σq. First, we substitute qθpat,ut|st, kq “ qθpat|stqN put|at,Σq into G:

Gpφ,ω,θq “ E
rqθps1:T ,u1:T ,a1:T ,kq

«

T
ÿ

t“1

lφ,ωpst,at,ut, kq ´ logN put|at,Σq ´ log qθpat|stq

ff

“ E
rqθps1:T ,u1:T ,a1:T ,kq

«

T
ÿ

t“1

lφ,ωpst,at,ut, kq `
1

2
}ut ´ at}

2
Σ´1 ´ log qθpat|stq

ff

` c1,

where c1 is a constant corresponding to the log-normalization term of the Gaussian distribution. Next,
by using the re-parameterization trick, we rewrite rqθps1:T ,u1:T ,a1:T , kq as

rqθps1:T ,u1:T ,a1:T , kq “ ppkqp1ps1q
T
ź

t“1

p1pst`1|st,at `Σ1{2εtqN pεt|0, Iqqθpat|stq,

where we use ut “ at`Σ1{2εt with εt „ N pεt|0, Iq. With this, the expectation of ΣT
t“1}ut´at}

2
Σ´1

over rqθps1:T ,u1:T ,a1:T , kq can be written as

E
rqθps1:T ,u1:T ,a1:T ,kq

«

T
ÿ

t“1

}ut ´ at}
2
Σ´1

ff

“ E
rqθps1:T ,u1:T ,a1:T ,kq

«

T
ÿ

t“1

}at `Σ1{2εt ´ at}
2
Σ´1

ff

“ E
rqθps1:T ,u1:T ,a1:T ,kq

«

T
ÿ

t“1

}Σ1{2εt}
2
Σ´1

ff

“ Tda,
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which is a constant. Then, the quantity G can be expressed as

Gpφ,ω,θq “ E
rqθps1:T ,u1:T ,a1:T ,kq

«

T
ÿ

t“1

lφ,ωpst,at,ut, kq ´ log qθpat|stq

ff

` c1 ` Tda.

By ignoring the constant, the optimization problem maxφ,ω,ψ minθ Fpφ,ω,ψq ´ Gpφ,ω,θq is
equivalent to

max
φ,ω,ψ

min
θ

Epdps1:T ,u1:T |kqppkq

«

T
ÿ

t“1

Eqψpat|st,ut,kq rlφ,ωpst,at,ut, kq ´ log qψpat|st,ut, kqs

ff

´ E
rqθps1:T ,u1:T ,a1:T ,kq

«

T
ÿ

t“1

lφ,ωpst,at,ut, kq ´ log qθpat|stq

ff

. (7)

Our next step is to substitute pωput|st,at, kq by our choice of model. First, let us consider a Gaussian
distribution pωput|st,at, kq “ N put|at,Cωpst, kqq, where the covariance depends on state. With
this model, the second term in Eq. (7) is given by

E
rqθps1:T ,u1:T ,a1:T ,kq

«

T
ÿ

t“1

lφ,ωpst,at,ut, kq ´ log qθpat|stq

ff

“ E
rqθps1:T ,u1:T ,a1:T ,kq

«

T
ÿ

t“1

rφpst,atq ` logN put|at,Cωpst, kqq ´ log qθpat|stq

ff

“ E
rqθps1:T ,u1:T ,a1:T ,kq

«

T
ÿ

t“1

rφpst,atq ´
1

2
}ut ´ at}

2
C´1
ω pst,kq

´
1

2
log |Cωpst, kq| ´ log qθpat|stq

ff

` c2,

where c2 “ ´da

2 log 2π is a constant. By using the reparameterization trick, we write the expectation
of ΣT

t“1}ut ´ at}
2
C´1
ω pst,kq

as follows:

E
rqθps1:T ,u1:T ,a1:T ,kq

«

T
ÿ

t“1

}ut ´ at}
2
C´1
ω pst,kq

ff

“ E
rqθps1:T ,u1:T ,a1:T ,kq

«

T
ÿ

t“1

}at `Σ1{2εt ´ at}
2
C´1
ω pst,kq

ff

“ E
rqθps1:T ,u1:T ,a1:T ,kq

«

T
ÿ

t“1

}Σ1{2εt}
2
C´1
ω pst,kq

ff

.

Using this equality, the second term in Eq. (7) is given by

E
rqθps1:T ,u1:T ,a1:T ,kq

«

T
ÿ

t“1

rφpst,atq ´ log qθpat|stq ´
1

2

´

}Σ1{2εt}
2
C´1
ω pst,kq

` log |Cωpst, kq|
¯

ff

.

(8)
Maximizing this quantity w.r.t. θ has an implication as follows: qθpat|stq maximizes the expected
cumulative reward while avoiding states that are difficult for demonstrators. Specifically, a large
value of Eppkq rlog |Cωpst, kq|s indicates that demonstrators have a low level of expertise for state
st on average, given by our estimated covariance. In other words, this state is difficult to accurately
execute optimal actions for all demonstrators on averages. Since the policy qθpat|stq should minimize
Eppkq rlog |Cωpst, kq|s, the policy should avoid states that are difficult for demonstrators. We expect
that this property may improve exploration-exploitation trade-off in IL. Nonetheless, we leave an
investigation of this property for future work, since this is not in the scope of the paper.

In this paper, we specify that the covariance does not depend on state: Cωpst, kq “ Cωpkq. This
model specification enables us to simplify Eq. (8) as follows:

E
rqθps1:T ,u1:T ,a1:T ,kq

«

T
ÿ

t“1

rφpst,atq ´ log qθpat|stq ´
1

2

´

}Σ1{2εt}
2
C´1
ω pkq

` log |Cωpkq|
¯

ff

“ E
rqθps1:T ,u1:T ,a1:T ,kq

«

T
ÿ

t“1

rφpst,atq ´ log qθpat|stq

ff

´
T

2
EppkqN pε|0,Iq

”

}Σ1{2ε}2
C´1
ω pkq

` log |Cωpkq|
ı

“ E
rqθps1:T ,a1:T q

«

T
ÿ

t“1

rφpst,atq ´ log qθpat|stq

ff

´
T

2
Eppkq

“

TrpC´1
ω pkqΣq ` log |Cωpkq|

‰

,
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where rqθps1:T ,a1:T q “ p1ps1q
śT

t“1

ş

A ppst`1|st,utqN put|at,Σqdutqθpat|stq. The last line fol-

lows from the quadratic form identity: EN pεt|0,Iq

”

}Σ1{2εt}
2
C´1
ω pkq

ı

“ TrpC´1
ω pkqΣq. Next, we

substitute pωput|st,at, kq “ N put|at,Cωpkqq into the first term of Eq. (7).

Epdps1:T ,u1:T |kqppkq

«

T
ÿ

t“1

Eqψpat|st,ut,kq rlφ,ωpst,at,ut, kq ´ log qψpat|st,ut, kqs

ff

“ Epdps1:T ,u1:T |kqppkq

«

T
ÿ

t“1

Eqψpat|st,ut,kq

”

rφpst,atq ´
1

2
}ut ´ at}

2
C´1
ω pkq

´
1

2
log |Cωpkq|

´ log qψpat|st,ut, kq
ı

ff

´ Tda log 2π{2. (9)

Lastly, by ignoring constants, Eq. (7) is equivalent to maxφ,ω,ψ minθHpφ,ω,ψ,θq, where

Hpφ,ω,ψ,θq “ Epdps1:T ,u1:T |kqppkq

«

T
ÿ

t“1

Eqψpat|st,ut,kq

„

rφpst,atq ´
1

2
}ut ´ at}

2
C´1
ω pkq

´ log qψpat|st,ut, kq



ff

´ E
rqθps1:T ,a1:T q

«

T
ÿ

t“1

rφpst,atq ´ log qθpat|stq

ff

`
T

2
Eppkq

“

TrpC´1
ω pkqΣq

‰

.

This concludes the derivation of VILD.

A.4 Importance sampling for reward learning
To improve the convergence rate of VILD when updating φ, we use importance sampling (IS). Specifi-
cally, by analyzing the gradient ∇φH “ ∇φtEpdps1:T ,u1:T |kqppkqrΣ

T
t“1Eqψpat|st,ut,kqrrφpst,atqss ´

E
rqθps1:T ,a1:T qrΣ

T
t“1rφpst,atqsu, we can see that the reward function is updated to maximize the

expected cumulative reward obtained by demonstrators and qψ , while minimizing the expected cumu-
lative reward obtained by qθ. However, low-quality demonstrations often yield low reward values.
For this reason, stochastic gradients estimated by these demonstrations tend to be uninformative,
which leads to slow convergence and poor data-efficiency.

To avoid estimating such uninformative gradients, we use IS to estimate gradients using high-quality
demonstrations which are sampled with high probability. Briefly, IS is a technique for estimat-
ing an expectation over a distribution by using samples from a different distribution [Robert and
Casella, 2005]. For VILD, we propose to sample k from a distribution p̃pkq 9 }vecpC´1

ω pkqq}1.
This distribution assigns high probabilities to demonstrators with high estimated level of ex-
pertise (i.e., demonstrators with a small Cωpkq). With this distribution, the estimated gradi-
ents tend to be more informative which leads to a faster convergence. To reduce a sampling
bias, we use a truncated importance weight: wpkq “ minpppkq{p̃pkq, 1q [Ionides, 2008], which
leads to an IS gradient: ∇φHIS “ ∇φtEpdps1:T ,u1:T |kqp̃pkqrwpkqΣ

T
t“1Eqψpat|st,ut,kqrrφpst,atqss ´

E
rqθps1:T ,a1:T qrΣ

T
t“1rφpst,atqsu. Computing wpkq requires ppkq, which can be estimated accurately

since k is a discrete random variable. For simplicity, we assume that ppkq is a uniform distribution.

B Implementation details

We implement VILD using the PyTorch deep learning framework. For all function approximators,
we use neural networks with 2 hidden-layers of 100 tanh units, except for the Humanoid task and
the robosuite reaching task where we use neural networks with 2 hidden-layers of 100 relu units.
We optimize parameters φ, ω, and ψ by Adam with step-size 3ˆ 10´4, β1 “ 0.9, β2 “ 0.999 and
mini-batch size 256. To optimize the policy parameter θ, we use trust region policy optimization
(TRPO) [Schulman et al., 2015] with batch size 1000, except on the Humanoid task where we use soft
actor-critic (SAC) [Haarnoja et al., 2018] with mini-batch size 256. Note that TRPO is an on-policy
RL method that uses only trajectories collected by the current policy, while SAC is an off-policy RL
method that use trajectories collected by previous policies. On-policy methods are generally more
stable than off-policy methods, while off-policy methods are generally more data-efficient [Gu et al.,
2017]. We use SAC for Humanoid mainly due to its high data-efficiency. When SAC is used, we
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Algorithm 1 VILD: Variational Imitation Learning with Diverse-quality demonstrations

1: Input: Diverse-quality demonstrations Dd “ tps1:T ,u1:T , kqnu
N
n“1 and a replay buffer B “ ∅.

2: while Not converge do
3: while |B| ă B with batch size B do Ź Collect samples from rqθps1:T ,a1:T q

4: Sample at „ qθpat|stq and εt „ N pεt|0,Σq.
5: Execute at ` εt, observe s1t „ pps1t|st,at ` εtq, and include pst,at, s

1
tq into B

6: end while
7: Update qψ by an estimate of ∇ψHpφ,ω,ψ,θq.
8: Update pω by an estimate of ∇ωHpφ,ω,ψ,θq `∇ωLpωq.
9: Update rφ by an estimate of ∇φHISpφ,ω,ψ,θq.

10: Update qθ by an RL method (e.g., TRPO or SAC) with reward function rφ.
11: end while

also use trajectories collected by previous policies to approximate the expectation over the trajectory
density q̃θps1:T ,a1:T q.

For the distribution pωput|st,at, kq “ N put|at,Cωpkqq, we use diagonal covariances Cωpkq “

diagpckq, where ω “ tckuKk“1 and ck P Rda
` are parameter vectors to be learned. For the distri-

bution qψpat|st,ut, kq, we use a Gaussian distribution with diagonal covariance, where the mean
and logarithm of the standard deviation are the outputs of neural networks. Since k is a discrete
variable, we represent qψpat|st,ut, kq by neural networks that have K output heads and take in-
put vectors pst,utq; The k-th output head corresponds to (the mean and log-standard-deviation of)
qψpat|st,ut, kq. We also pre-train the mean function of qψpat|st,ut, kq, by performing least-squares
regression for 1000 gradient steps with target value ut. This pre-training is done to obtain reasonable
initial predictions. For the policy qθpat|stq, we use a Gaussian policy with diagonal covariance,
where the mean and logarithm of the standard deviation are outputs of neural networks. We use
Σ “ 10´8I in experiments.

To control exploration-exploitation trade-off, we use an entropy coefficient α “ 0.0001 in TRPO.
In SAC, the value of α is optimized so that the policy has a certain value of entropy, as described
by Haarnoja et al. [2018]. Note that including α in VILD is equivalent to rescaling quantities in the
model by α, i.e., expprφpst,atq{αq and ppωput|st,at, kqq

1
α . A discount factor 0 ă γ ă 1 may be

included similarly, and we use γ “ 0.99 in experiments.

For all methods, we regularize the reward/discriminator function by the gradient penalty [Gulrajani
et al., 2017] with coefficient 10, since it was previously shown to improve performance of generative
adversarial learning methods. For methods that learn a reward function, namely VILD, AIRL, and
MaxEnt-IRL, we apply a sigmoid function to the output of a reward network to bound reward
values. We found that without the bounds, reward values of the agent can be highly negative in
the early stage of learning, which makes RL methods prematurely converge to poor policies. An
explanation of this phenomenon is that, in MDPs with large state and action spaces, distribution
of demonstrations and distribution of agent’s trajectories are not overlapped in the early stage of
learning. In such a scenario, it is trivial to learn a reward function which tends to positive-infinity
values for demonstrations and negative-infinity values for agent’s trajectories. While the gradient
penalty regularizer slightly remedies this issue, we found that the regularizer alone is insufficient to
prevent this scenario. Moreover, for VILD, it is beneficial to bound the reward function to control a
trade-off between the immediate reward and the squared error when optimizing ψ.

A pseudo-code of VILD with IS is given in Algorithm 1, where the reward parameter is updated by
IS gradient in line 8. For VILD without IS, the reward parameter is instead updated by an estimate
of ∇φHpφ,ω,ψ,θq. The regularizer Lpωq “ TEppkqrlog |C´1

ω pkq|s{2 penalizes large value of
Cωpkq. A source-code of our implementation will be publicly available.

C Experiment Details

In this section, we describe experimental settings and data generation.
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Table 1: Performance of a random policy π0,
the optimal policy π‹, and demonstrators with
the Gaussian noisy policy.
σk Cheetah Ant Walker Humanoid
(π0) -0.58 995 131 222
(π‹) 4624 4349 4963 5093
0.01 4311 3985 4434 4315
0.05 3978 3861 3486 5140
0.01 4019 3514 4651 5189
0.25 1853 536 4362 3628
0.40 1090 227 467 5220
0.6 567 -73 523 2593
0.7 267 -208 332 1744
0.8 -45 -979 283 735
0.9 -399 -328 255 538
1.0 -177 -203 249 361

Table 2: Performance of a random policy π0,
the optimal policy π‹, and demonstrators with
the TSD noisy policy.
σk Cheetah Ant Walker Humanoid
(π0) -0.58 995 131 222
(π‹) 4624 4349 4963 5093
0.01 4362 3758 4695 5130
0.05 4015 3623 4528 5099
0.01 3741 3368 2362 5195
0.25 1301 873 644 1675
0.40 -203 231 302 610
0.6 -230 -51 29 249
0.7 -249 -37 24 221
0.8 -416 -567 14 191
0.9 -389 -751 7 178
1.0 -424 -269 4 169

C.1 Experimental setting and data generation for benchmark tasks

For the benchmark experiment, we evaluate VILD on four continuous-control benchmark tasks from
OpenAI gym platform [Brockman et al., 2016] with the Mujoco physics simulator: HalfCheetah, Ant,
Walker2d, and Humanoid. To obtain the optimal policy for generating demonstrations, we use the
ground-truth reward function of each task to pre-train π‹ with TRPO. We generate diverse-quality
demonstrations by using K “ 10 demonstrators according to the graphical model in Figure 1(b). We
consider two types of the noisy policy pput|st,at, kq: a Gaussian noisy policy and a time-signal-
dependent (TSD) noisy policy.

Gaussian noisy policy. We use a Gaussian noisy policy N put|at, σ
2
kIq with a constant covariance.

The value of σk for each of the 10 demonstrators is 0.01, 0.05, 0.1, 0.25, 0.4, 0.6, 0.7, 0.8, 0.9 and
1.0, respectively. Note that our model assumption on pω corresponds to this Gaussian noisy policy.
Table 1 shows the performance of demonstrators (in terms of cumulative ground-truth rewards) with
this Gaussian noisy policy. A random policy π0 is an initial policy neural network for learning; The
network weights are initialized such that the magnitude of actions is small. Note that this initialization
scheme is a common practice in deep RL [Gu et al., 2017].

TSD noisy policy. To make learning more challenging, we generate demonstrations according
to a noise characteristic of human motor control, where a magnitude of noises is proportion to a
magnitude of actions and increases with execution time [van Beers et al., 2004]. Specifically, we
generate demonstrations using a Gaussian distribution N put|at,diagpbkptq ˆ }at}1{daqq, where
the covariance is proportion to the magnitude of action and depends on time steps and ˆ denotes
an element-wise product. We call this policy time-signal-dependent (TSD) noisy policy. Here,
bkptq is a sample of a noise process whose noise variance increases over time. We obtain this noise
process for the k-th demonstrator by reversing Ornstein–Uhlenbeck (OU) processes with parameters
θ “ 0.15 and σ “ σk [Uhlenbeck and Ornstein, 1930]1. The value of σk for each demonstrator
is 0.01, 0.05, 0.1, 0.25, 0.4, 0.6, 0.7, 0.8, 0.9, and 1.0, respectively. Table 2 shows the performance
of demonstrators with this TSD noisy policy. Learning from demonstrations generated by TSD is
challenging; The Gaussian model of pω cannot perfectly model the TSD noisy policy, since the
ground-truth variance is a function of actions and time steps.

C.2 Experimental setting for robosuite reaching task

For real-world data, we use a robot control task from the robosuite environment Fan et al. [2018]
and a crowdsourced demonstration dataset from Mandlekar et al. [2018]2. These demonstrations
are collected for object-manipulation tasks such as assembly tasks. These object-manipulation tasks
require the agent to perform three subtasks: reaching, picking, and placing. In our preliminary

1OU process is commonly used to generate time-correlated noises where the noise variance decays towards
zero. We reserve this process along the time axis, so that the noise variance grows over time.

2We use the publicly available dataset: http://roboturk.stanford.edu/dataset.html
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experiments, none of IL methods successfully learns object-manipulation policies, since the agent
often fails at picking the object. We expect that a hierarchical policy is necessary to perform these
manipulation tasks, due to the hierarchical structure (i.e., subtasks) of these tasks. Since hierarchical
IL is not in the scope of this paper, we consider the subtask of reaching where non-hierarchical
policies suffice. We leave an extension of VILD to hierarchical policy for future work.

In this experiment, we consider the subtask of reaching, which is still challenging for IL due
to diverse quality of crowdsourced demonstrations. To obtain reaching demonstrations from the
original object-manipulation demonstrations (we use the SawyerNutAssemblyRound dataset), we
terminate demonstrations after the robot’s end-effector contacts the target object. After applying
such a termination procedure, the dataset used in this experiment consists of 10 randomly chosen
demonstrations (N “ 10) whose length T is approximately 500 time steps. The number of state-
action pairs in this demonstration dataset is approximately 5000. Since we do not know the actual
number of demonstrators that collected these N “ 10 demonstrations, we set K “ N and k “ n.
We use true states of the robot and do not use visual observations. Since the reaching task does not
require picking the object, we disable the gripper control command of the robot. The state space of
this task is S Ď R44, and the action space of this task is A Ď R7. Figure 5 shows three examples of
demonstrations used in this experiment. We can notice the differences in qualities of demonstrations,
e.g., demonstration 2 is better than demonstration 1 since the robot reaches the object faster.

The performance of learned policies are evaluated using a reward function whose values are inverse
proportion to the distance between the object and the end-effector (i.e., small distance yields high
reward). We repeat the experiment for 5 trials using the same dataset and report the average
performance (undiscounted cumulative rewards). For each trial, we generate 100 test trajectories for
evaluating the performance. Note that the number of test trajectories in this experiment is larger than
that in the benchmark experiments. This is because the initial states of this reaching task is much
more varied than those in benchmark tasks. We do not evaluate VILD without IS and VAIL, since in
benchmarks VILD with IS performs better than VILD without IS and VAIL is comparable to GAIL.

For all methods, we use neural networks with 2 hidden-layers of 100 relu units. We update policy
parameters by TRPO with the same hyper-parameters as the benchmark experiments. We pre-
train the mean of Gaussian policies for all methods by behavior cloning (i.e., we apply 1000
gradient descent steps of least-squares regression). To pre-train InfoGAIL which learns a context-
dependent policy, we use the variable k as context for pre-training. For VILD, we apply the
log-sigmoid function to the reward function. Specifically, we parameterize the reward function
as rφps,aq “ logDφps,aq where Dφps,aq “

exppdφps,aqq
exppdφps,aqq`1 and dφ : S ˆ A Ñ R. We also

apply a substitution ´ logDφps,aq Ñ logp1 ´ Dφps,aqq, which is a common practice in GAN
literature [Fedus et al., 2018]. By doing so, we obtain an objective of VILD that closely resembles
the objective of GAIL:

Hlogpφ,ω,ψ,θq“Epdps1:T ,u1:T |kqppkq

”

řT
t“1Eqψpat|st,ut,kq

”

logDφps,aq´
1
2}ut ´ at}

2
C´1
ω pkq

ı

`Htpqψq
ı

` E
rqθps1:T ,a1:T q

”

řT
t“1logp1´Dφps,aqq`log qθpat|stq

ı

`
T

2
Eppkq

“

TrpC´1
ω pkqΣq

‰

.

We use this variant of VILD in this experiment since it performs better than VILD with the standard
reward function. Although we omit the IS distribution in this equation, we use IS in this experiment.

D Additional experimental results
Results against online IL methods. Figure 6 shows the learning curves of VILD and existing
online IL methods against the number of transition samples. It can be seen that for both types of noisy
policy, VILD with and without IS outperform existing methods overall, except on the Humanoid
tasks where most methods achieve comparable performance.

Accuracy of estimated expertise parameter. Figure 7 shows the estimated parameters ω “

tcku
K
k“1 of N put|at,diagpckqq and the ground-truth variance tσ2

ku
K
k“1 of the Gaussian noisy policy

N put|at, σ
2
kIq. VILD learns an accurate ranking of the variance compared to the ground-truth.

The values of these parameters are also quite accurate compared to the ground truth, except for
demonstrators with low-levels of expertise. A possible reason for this phenomena is that low-quality
demonstrations are highly dissimilar, which makes learning the expertise more challenging.
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(a) Demonstration number 1.

(b) Demonstration number 2.

Figure 5: Two examples of crowdsourced demonstrations in the robosuite reaching experiment.
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(a) Performance of online IL methods when demonstrations are generated using Gaussian noisy policy.
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(b) Performance of online IL methods when demonstrations are generated using TSD noisy policy.

Figure 6: Performance averaged over 5 trials of online IL methods against the number of transition
samples. Horizontal dotted lines indicate performance of k “ 1, 3, 5, 7, 10 demonstrators.
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Figure 7: Expertise parameters ω “ tckuKk“1 learned by VILD and the ground-truth tσ2
ku

K
k“1 for the

Gaussian noisy policy. For VILD, we report the value of }ck}1{da.
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