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Abstract

We present a novel approach to weakly supervised object detection. Instead of
annotated images, our method only requires two short videos to learn a new object:
1) a video of a moving object and 2) one or more “negative” videos of the scene
without the object. The key idea of the algorithm is to train the object detector to
produce physically plausible object motion when applied to the first video and to
not detect anything in the second video. With this approach, our method learns to
locate objects without any object location annotations. Video data is only required
for training. Once the model is trained, it performs object detection on single
images. We evaluate our method in three robotics settings that afford learning
objects from motion: observing moving objects, watching demonstrations of object
manipulation, and physically interacting with objects (see a video summary at
https://youtu.be/XVav0eG9iuQ). An extended version of this paper can
be found at https://arxiv.org/abs/1909.12950.

1 Introduction

A major bottleneck for object detection in robotics is the need for time-consuming image annotation.
We take a step towards overcoming this problem by learning object detection from short videos with
minimal supervision. To learn a new object, our approach only requires two short videos, one that
shows the object in motion and one that shows the scene without the object. Such videos are easy
and fast to generate – e.g. through human demonstrations or physical interaction of a robot – which
makes this approach very promising for robotics.

The underlying assumption that our method is based on is that an object is a collection of matter
that moves as a unit. We leverage this fact and use motion as a cue for learning object detection.
Given a video of a moving object, our approach learns an object detector by optimizing its output to
describe physically plausible motion. We additionally collect a negative video of the scene without
the object and train the object detector to not respond to it, which allows the approach to ignore
camera motion and other moving objects. Finally, we use the fact that objects are spatially local
through a spatial encoder architecture that estimates the object’s location based on the strongest local
activations, which restricts the receptive field and induces robustness to non-local distractions.

Our contribution is a novel approach to weakly supervised learning of object detection that uses
negative examples and motion (NEMO). Our method trains a spatial encoder network by optimizing
consistency with object motion. NEMO only requires short videos of moving objects that are easy
to collect and it does not rely on any pretraining or supervision beyond marking these videos as
positive and negative. At inference, the learned model can detect objects regardless of whether they
are moving or not because the model works on single images. Note that, although we are evaluating
our model on video frames, it does not perform tracking but per frame detection.
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2 Related Work

This work is related to physics-based representation learning, where a latent representation is learned
by optimizing consistency with physics, e.g. by optimizing consistency with a known dynamics
model [34] or more general assumptions about physical interactions [17, 18], and by pairing such
assumptions with image reconstruction [10, 35, 7]. Image embeddings have been learned based on
spatio-temporal constistency [9], object permanence [15], equivariance to known ego-motion [16],
and view point invariance [33]. While these approaches are similar to this paper in spirit, they
learn image embeddings, whereas this paper learns to detect objects in the image coordinates. This
more constrained object-based representation makes the presented approach particularly robust and
efficient.

This paper is also inspired by active perception [3], using action to facilitate perception, e.g. using
motion to identify and track objects [26], to segment them [8], to understand their articulation [21].
Combining this idea with learning enables generalization beyond the observed motion, e.g. to learn
object segmentation from videos of moving objects [30, 31]. This paper follows the same direction
and addresses object detection by introducing ideas from representation learning and by leveraging
negative examples.

Labeling training videos as positive and negative examples can also be viewed as weakly supervised
learning—learning from labels that are only partially informative. Weakly supervised object detection
relies on image-wide labels to learn to localize the corresponding objects [29, 28]. This paper goes
one step further by only using per-video labels. It compensates this reduction of supervision by
adding motion as a cue for learning object detection.

3 Object Detection from Negative Examples and Motion (NEMO)

The key idea of NEMO is to learn how to detect an object from two videos, a positive video that shows
the target object in motion and a negative video of the same scene without that object. These videos
are used to optimize two objectives: 1) Learn to detect “something that moves in a physically plausible
way” in the positive video, such that its location varies over time without having instantaneous jumps,
which is defined below as a combination of a variation loss and a slowness loss. 2) Learn to detect
“something that is present in the positive video but not in the negative video”, which is defined as
a presence loss. These objectives are used to train a spatial encoder network, which estimates the
object location based on the strongest activation after a stack of convolutions. Optimization is done
by gradient descent. We will now look in detail into each of these components.

Network Architecture: Spatial Encoder NEMO’s network architecture is an extension of the
encoder component of a deep spatial autoencoder [7] and therefore called a spatial encoder. The
spatial encoder is a stack of convolutional layers [23] without striding or pooling. It uses residual
connections [12], batch normalization [14], and ReLU nonlinearities [27]. All experiments in this
paper use 8 residual blocks with 32 channels and kernel size 3, which are applied to images scaled
to 120 × 160 or 90 × 160. The output has a single channel, followed by a spatial softmax, which
produces a probability distribution over the object’s location in the image. We obtain a location
estimate by taking the mean of that distribution (the spatial softargmax) and estimate the confidence
in the network’s prediction based on the maximum pre-softmax activation.

Losses: Variation, Slowness, & Presence The spatial encoder is trained by minimizing a combi-
nation of three losses—variation, slowness, and presence (see Fig. 1), which are defined here. Let us
denote the input image at time t as I(t) ∈ Rh×w where h and w are the height and width of the image.
We will refer to the spatial encoder as f with parameters θ, and the output of f before the spatial
softmax asO(t) ∈ Rh×w, such thatO(t) = f(I(t);θ). By applying the spatial softmax across image
coordinates i and j, we get a probability image P (t) ∈ Rh×w and its mean z(t) ∈ R2 normalized to

[−1, 1] as P (t)
i,j = e

O
(t)
i,j∑

i,j e
O

(t)
i,j

and z(t) =

[∑
i,j(

2i
h − 1)P

(t)
i,j∑

i,j(
2j
w − 1)P

(t)
i,j

]
.

The first two losses, variation and slowness, operate on the mean z in positive frames. Together, they
measure whether the detected object location z(t) moves in a physically plausible way by comparing
pairs of z(t) for different t.
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Figure 1: NEMO overview. Frames from a nega-
tive (-) and a positive video (+) with a moving object
(black circle) are fed into the spatial encoder. Con-
secutive frames (blue and green) are optimized for
slowness, which pulls location estimates together.
Pairs of distant frames (purple and orange) are op-
timized for variation, which pushes location esti-
mates apart. Combinations of positive and negative
frames (orange and red) are optimized for detection
in the positive frame, which increases/decreases
activations in the positive/negative frame.

The variation loss encodes the assumption that the target object does not stay still in the video by
enforcing that zt+d is different from zt for d in some range [dmin, dmax]. The variation loss measures
proximity using e−distance, which is 1 if zt = zt+d and goes to 0 with increasing distance [18].

Lvariation(θ) = Et,d∈[dmin,dmax][e
−β||zt+d−zt||],

where β scales how far zt and zt+d need to be apart and dmin and dmax define for which time
differences variation is enforced. All experiments use β = 10, dmin = 50, and dmax = 100.

The slowness loss encodes the assumption that objects move with relatively low velocities, i.e., that
their locations at time t and t+ 1 are typically close to each other. Consequently, this loss measures
the squared distance between z in consecutive time steps t and t + 1, which favors smooth over
erratic object trajectories [36, 17].

Lslowness(θ) = Et[||zt+1 − zt||2].
The presence loss encodes the assumption that the object is present in the positive video but not in
the negative one. Taking a positive frame t and a negative frame t−, we can compute the probability
q(t,t

−) of the object being in the positive frame by computing the spatial softmax jointly over both
frames and summing over all pixels. The loss is then defined as negative log probability.

Lpresence(θ) = Et,t− [− log(q(t,t
−))],where q(t,t

−) =

∑
i,j e

O
(t)
i,j∑

i,j e
O

(t)
i,j + eO

(t−)
i,j

.

These losses are combined in a weighted sum, L(θ) = wvLvar.(θ) + wsLslown.(θ) + wpLpres.(θ),
where the weights were chosen such that all gradients have the same order of magnitude. All
experiments use wv = 2, ws = 10, and wp = 1. The losses are optimized from minibatches of size
10. For numerical stability of the gradient computation, Gaussian noise ε ∼ N (µ = 0, σ = 10−5)
is added to zt. The loss L(θ) is optimized using Adam [22] with default parameters and m = 50
random restarts. The method is implemented based on TensorFlow [1] and Keras [6].

4 Experiments

We evaluate NEMO in three settings that afford object detection from motion:

• 1. Learning to detect moving objects by observing them (Fig. 2 top)
• 2. Learning to detect static objects from human demonstrations (Fig. 2 middle)
• 3. Learning to detect static objects by physically interacting with them (Fig. 2 bottom)

In all settings, our method was trained on short (less than five minutes) positive and negative videos
and then tested on individual frames from a different video. Note that NEMO does not perform
tracking. All results show per frame detection. Since settings 2 and 3 feature multiple objects, a
separate detector was trained per object, using videos of the other objects as negative examples. The
robot in setting 3 executed a pre-defined movement to produce object motion.

Figure 2 shows object detection on individual frames of test videos. These results show that our
method is able to discover objects without any image level annotations from a few short videos of
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Figure 2: Qualitative results on test images. Settings 1.-3. top to bottom. Colored dots and image crops
visualize detected object locations. For more details, see https://youtu.be/XVav0eG9iuQ.

N
E
M

O

Fa
st

e
rR

C
N

N

T
M

 (
C

C
R

N
)

T
M

 (
C

C
F)

T
M

 (
C

C
FN

)

T
M

 (
C

C
R

)

T
M

 (
S
Q

D
)

T
M

 (
S
Q

D
N

)

B
o
o
st

in
g

M
IL

K
C

F

T
LD

M
e
d
ia

n
fl
o
w

M
O

S
S
E

.00

.05

.10

M
S
E

N
E
M

O

Fa
st

e
rR

C
N

N

T
M

 (
C

C
R

N
)

T
M

 (
C

C
F)

T
M

 (
C

C
FN

)

T
M

 (
C

C
R

)

T
M

 (
S
Q

D
)

T
M

 (
S
Q

D
N

)

B
o
o
st

in
g

M
IL

K
C

F

T
LD

M
e
d
ia

n
fl
o
w

M
O

S
S
E

.00

.01

.02

M
S
E

N
E
M

O

Fa
st

e
rR

C
N

N

T
M

 (
C

C
R

N
)

T
M

 (
C

C
F)

T
M

 (
C

C
FN

)

T
M

 (
C

C
R

)

T
M

 (
S
Q

D
)

T
M

 (
S
Q

D
N

)

B
o
o
st

in
g

M
IL

K
C

F

T
LD

M
e
d
ia

n
fl
o
w

M
O

S
S
E

.00

.05

.10

M
S
E

Figure 3: Test error comparison. Settings 1.-3. left to right, bars denote standard errors.

moving objects and that it is robust to distracting motion of the camera, the arm, and other moving
objects as well as to substantial occlusions during training and testing.

To evaluate detection accuracy, Figure 3 compares NEMO (green) to FasterRCNN [32] trained on
COCO [25] (red), template matching with different metrics [24] (blue), and tracking [11, 2, 13, 20,
19, 4] (purple) using OpenCV [5]. Note that none of the methods we compare to can solve the
problem NEMO is addressing because each requires some amount of ground truth object location
annotations. For template matching and tracking methods, we provide annotated bounding boxes in
the first frame to initialize tracking and to extract templates. For FasterRCNN, we use ground truth
locations throughout the test video to match predicted bounding boxes to target objects, which is
needed because the evaluated object classes are not present in COCO. Although NEMO does not need
any information about object locations during training or testing, it outperforms the other methods
in all three settings. These results show the advantage of adapting to the given set of objects using
unsupervised learning and hint at the potential of future work on object detection from motion.
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