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Abstract

Deep reinforcement learning (DRL) is a promising approach for adaptive robot
control, but its current application to robotics is currently hindered by high sam-
ple requirements. We propose two novel data augmentation techniques for DRL
in order to reuse more efficiently observed data. The first one called Kaleido-
scope Experience Replay exploits reflectional symmetries, while the second called
Goal-augmented Experience Replay takes advantage of lax goal definitions. Our
preliminary experimental results show a large increase in learning speed.

1 Introduction

Deep reinforcement learning (DRL) has demonstrated great promise in recent years [Mnih et al.,
2015; Silver et al., 2016]. However, despite being shown to be a viable approach in robotics
[Kalashnikov et al., 2018; OpenAI et al., 2018], DRL still suffers from high sample complexity
in practice—an acute issue in robot learning.

Given how critical this issue is, many diverse propositions have been presented. For brevity, we only
recall the most related to our work. A first idea is to better utilize observed samples, e.g., memory
replay [Lin, 1992] or hindsight experience replay (HER) [Andrychowicz et al., 2017]. Although
better observation reuse does not reduce sample requirements in a DRL algorithm, it decreases the
number of actual interactions with the environment, which is the most important factor in robot
learning. Another idea is to exploit any a priori domain knowledge one may have (e.g., symmetry
[Kidziński et al., 2018a]) to support learning. Besides, a robot is generally expected to solve not only
one fixed task, but multiple related ones. Multi-task reinforcement learning [Plappert et al., 2018]
is considered beneficial as it would not be feasible to repeatedly solve each encountered task tabula
rasa. Finally, in order to avoid or reduce learning on an actual robot, recent works have investigated
how policies learned in a simulator can be transferred to a real robot [Tobin et al., 2017].

In this work, in order to further reduce the requirement on the number of actual samples, we propose
two novel data augmentation methods that better reuse the samples observed in the true environment
by exploiting the symmetries (i.e., any invariant transformation) of the problem. For simplicity, we
present them in the same set-up as HER [Andrychowicz et al., 2017], although the techniques can
be instantiated in other settings with any DRL algorithm based on memory replay.

The first technique, Kaleidoscope Experience Replay (KER), is based on reflectional symmetry,
it posits that trajectories in robotic spaces can enjoy multiple reflections and remain in the valid
workspace. Namely, for a given robotic problem, there is a set of reflections that can generate from
any valid observed trajectory many new artificial valid ones for training. For concreteness, in this
paper we focus on reflections with respect to hyperplanes.
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The second technique, Goal-augmented Experience Replay (GER), can be seen as a generalization
of HER: any artificial goal g generated by HER can be instead replaced by a random goal sampled
in a small ball around g. This idea takes advantage of tasks where success is defined as reaching a
final pose within a distance of the goal set by a threshold (such tasks are common in robotics). Here,
successful trajectories are augmented using the invariant transformation that consists in changing
actual goals to random close goals.

In Sec. 2, we present this work’s setup. Sec. 3 introduces related work. Sec. 4 details our two data
augmentation techniques. Sec. 5 presents preliminary results; and Sec. 6 highlights key lessons.

2 Background

In this work, we consider robotic tasks that are modeled as multi-goal Markov decision processes
[Schaul et al., 2015] with continuous state and action spaces: 〈S,A,G, T,R, p, γ〉 where S is a
continuous state space,A is a continuous action space, G is a set of goals, T is the unknown transition
function that describes the effects of actions, R(s, a, s′, g) is the immediate reward when reaching
state s′ ∈ S after performing action a ∈ A in state s ∈ S if the goal were g ∈ G. Finally, p is a
joint probability distribution over initial states and initial goals, and γ ∈ (0, 1) is a discount factor.
In this framework, the robot learning problem corresponds to an RL problem that aims at obtaining
a policy π : S × G → A such that the expected discounted sum of rewards is maximized for any
given goal.

When the reward function is sparse, as assumed here, this RL problem is particularly hard to solve.
In particular, we consider here reward functions that are described as follows: R(s, a, s′, g) =
1[d(s′, g) ≤ εR] − 1 where 1 is the indicator function, d is a distance, and εR > 0 is a fixed
threshold.

To tackle this issue, Andrychowicz et al. [2017] proposed HER, which is based on the following
principle: Any trajectory that failed to reach its goal still carries useful information; it has at least
reached the states of its trajectory path. Using this natural and powerful idea, memory replay can be
augmented with the failed trajectories by changing their goals in hindsight.

3 Related Work

HER [Andrychowicz et al., 2017; Plappert et al., 2018] has been extended in various ways. Pri-
oritized replay was incorporated in HER to learn from more valuable episodes with higher priority
[Zhao and Tresp, 2018]. In [Fang et al., 2019], HER was generalized to deal with dynamic goals.
In [Gerken and Spranger, 2019], a variant of HER was also investigated where completely random
goals replace achieved goals and in [Rauber et al., 2017], it was adapted to work with on-policy RL
algorithms.

Symmetry has been considered in MDPs [Zinkevich and Balch, 2001] and RL [Kamal and Murata,
2008; Agostini and Celaya, 2009; Mahajan and Tulabandhula, 2017; Kidziński et al., 2018b; Ama-
dio et al., 2019]. It can be known a priori or learned [Mahajan and Tulabandhula, 2017]. In this
work, we assume the former, which is reasonable in many robotics tasks. A natural approach to
exploit symmetry in sequential decision-making is by aggregating states that satisfy an equivalence
relation induced by a symmetry [Zinkevich and Balch, 2001; Kamal and Murata, 2008]. A dihedral
group with finite invariant elements has been leveraged to implement symmetry on the state repre-
sentation of board position in Go [Silver et al., 2016]. Another related approach takes into account
symmetry in the policy representation [Amadio et al., 2019]. Doing so reduces representation size
and generally leads to faster solution times. However, the state-aggregated representation may be
difficult to recover, especially if many symmetries are considered simultaneously. Still another ap-
proach is to use symmetry during training instead. One simple idea is to learn the Q-function by
performing an additional symmetrical update [Agostini and Celaya, 2009]. Another method is to
augment the training points with their reflections [Kidziński et al., 2018b].

In this paper, we generalize further this idea as a data augmentation technique where many symme-
tries can be considered and pairs of symmetrical updates do not need to be simultaneously applied.

While, to the best of our knowledge, data augmentation has not been considered much to accelerate
learning in RL, it has been used extensively and with great success in machine learning [Baird,

2



Figure 1: Framework overview: real and symmetrically transformed transitions are stored in the
replay buffer. Sampled minibatches are then augmented with GER before updating the policy.

1992] and more so in deep learning [Krizhevsky et al., 2012]. Interestingly, symmetries can also be
exploited in neural network architecture design [Gens and Domingos, 2014]. However, in our case,
the integration of symmetry in deep networks will be left as future work.

4 Data Augmentation for RL

To reduce the number of interactions with the real environment our goal is to generate artificial
training data based on actual trajectories collected during the robot’s learning.

Our architecture leverages our two proposed techniques, Kaleidoscope experience replay (KER) and
Goal-Augmented Experience Replay (GER). While the two methods are combined here, only one
of them could be used instead. An overview of our architecture is illustrated in Fig. 1.

4.1 Kaleidoscope Experience Replay (KER)

KER uses reflectional symmetry1. Consider a 3D workspace with a bisecting plane xoz as shown in
Fig. 2. If a valid trajectory is generated in the workspace (blue in Fig. 2), natural symmetry would
then yield a new valid trajectory reflected on this plane. More generally, the xoz plane may be
rotated by some angle θz along axis ~z and still define an invariant symmetry for the robotic task. We
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Figure 2: Kaleidoscope Experience Replay leverages natural symmetry. Valid trajectories are re-
flected with respect to plane xoz, where the latter can itself be rotated by some θz along axis ~z.

can now precisely define KER, which amounts to augmenting any original trajectory with a certain
number of random symmetries. A random symmetry is a reflectional symmetry with respect to the
xoz plane after it has been rotated by a random angle about the ~z-axis.

Note that instead of storing the reflected trajectories in the replay buffer, the random symmetries
could be instead applied to sampled minibatches. This approach was tried previously for single-
symmetry scenarios [Kidziński et al., 2018a]. Doing so, however, is more computationally taxing
as transitions are reflected every time they are sampled and more significantly leads to lower perfor-
mance2. Our conjecture is that such approach leads to a lower diversity in the minibatches.

1Though more general invariant transformations could also be used in place of reflectional symmetry.
2Please visit our project page for this and more supplementary information (not referenced until after re-

view).
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4.2 Goal-Augmented Experience Replay (GER)

GER exploits the formulation of any reward function that defines a successful trajectory as one
whose end position is within a small radial threshold (a ball) centered around the goal. When the
robot obtains a successful trajectory, we therefore know that it can in fact be considered successful
for any goal within a ball centered around its end position. Based on this observation, GER augments
successful trajectories by replacing the original goal with a random goal sampled within that ball.
This ball can be formally described as {g ∈ G|d(sf , g) ≤ ε}where sf is the final state reached in the
original trajectory and ε < εR is a threshold, which does not have to be constant for each application
of GER. Therefore, GER can be seen as a generalization of HER and can be implemented in the
same fashion. This is why in our architecture, GER is applied on minibatches, like HER.

5 Preliminary Experimental Results

Our experimental evaluation is performed according to the HER formulation [Andrychowicz et al.,
2017]. Namely, we use a simulated 7-DOF Fetch Robotics arm trained with DDPG on the pushing,
sliding, and pick-and-place tasks.

We design our experiments to demonstrate the effectiveness of our propositions and final combina-
tion, which uses n = 8 random symmetries for KER and 4 applications of GER (where one of them
uses a threshold equal to zero in order to also take full advantage of realized goals). We now present
some initial experimental results. As shown in Fig. 3, our method vastly improves the learning
speed compared to vanilla HER.

In our experiments, we have observed that performance is monotonic with respect to the number n
of random symmetries, although the gain diminishes for larger n. Similar observations can be made
for the number of applications of GER.
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Figure 3: Comparison of vanilla HER with the combination of 8 KER symmetries and 4 GERs.

6 Conclusion

We proposed two novel data augmentation techniques KER and GER to amplify the efficiency of
observed samples in a memory replay mechanism. KER exploited reflectional symmetry in the valid
workspace (though in general it could be employed with other types of symmetries). GER, as an ex-
tension of HER, is specific to goal-oriented tasks where success is defined in terms of a thresholded
distance. The combination of these techniques greatly accelerated learning as demonstrated in our
experiments.

Our next step is to use our method to solve the same tasks with a simulated Baxter robot, and
then transfer to a real Baxter using a sim2real methodology. Furthermore, we aim at extending our
proposition to other types of symmetries and to other robotic tasks as well.
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