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1 Introduction

In recent years, Deep Reinforcement Learning (DRL) methods have achieved tremendous success
on a variety of diverse environments including video games [15], robotic grasping [12], and in-hand
manipulation tasks [19]. While impressive, all of these examples use a blocking observe-think-act
paradigm: the agent assumes that the environment will remain static while it thinks, so that its actions
will be executed on the same states from which they were computed. This assumption breaks in
the concurrent real world where the environment state evolves substantially as the agent processes
observations and plans its next actions. In addition to solving dynamic tasks where blocking models
would fail, thinking and acting in a concurrent manner can provide practical qualitative benefits
such as smoother, more human-like motions and the ability to seamlessly plan for next actions while
executing the current one.

In this paper, we aim to study and incorporate knowledge about concurrent environments in the
context of DRL. In particular, we derive a modified Bellman Operator for concurrent MDPs, and
present the minimal set of information that we must augment state observations with in order to
recover blocking performance with Q-learning. We present experiments on different simulated
environments that incorporate concurrent actions, ranging from common simple control domains to
vision-based robotic grasping tasks.

2 Related Work

Although real-world robotics systems are inherently concurrent, it is possible to engineer them into
approximately blocking systems. For example, low-latency hardware [19] can minimize time spent
during state capture and policy inference, which are main sources of latency. Another option is to
make the system dynamics blocking by design, where actions are executed to completion and the
system velocity is decelerated to zero before a state is recorded [12]. However, this comes at the
cost of jerkier robot motions, and does not generalize to tasks where it is not possible to wait for the
system to come to rest between deciding new actions.
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Figure 1: Shaded nodes represent observed variables and unshaded nodes represent unobserved
random variables. (a): in “blocking” MDPs, the environment state does not change while the agent
records the current state and selects an action. (b): in “concurrent” MDPs, state and action dynamics
are continuous-time stochastic processes s(t) and ai(t). At time t, the agent observes the state
of the world s(t), but by the time it selects an action ai(t + tAS), the last chosen action process
ai−1(t−H + tAS′′) has “rolled over” to an unobserved state s(t+ tAS). An agent that concurrently
selects actions from old states while in motion may need to interrupt a previous action before it has
finished executing its current trajectory.

Other works utilizing algorithmic changes as a more principled way to directly overcome the
challenges of concurrent control can be grouped into three categories: 1) learning more general
policies that are robust to latency [24], 2) including past history such as frame-stacking [18, 11], and
3) learning dynamics models to predict the future state at which the action will be executed [7, 2, 30]).
These prior work are discussed in Appendix A.1.

Finally, we build many of the theoretical formulations and findings in continuous-time optimal
control [13, 26] and reinforcement learning [16, 6, 4, 23], and show their applications to deep
reinforcement learning methods on more complex, vision-based robotics tasks.

3 Value-based Reinforcement Learning in Concurrent Environments

The default blocking environment formulation is detailed in Figure 1a, and the effect of concurrent
actions is illustrated in Figure 1b. Since state capture and policy inference occur sequentially, we
consider the cumulative time for state capture, policy inference, and any communication latency to be
one contiguous time duration, which we deem Action Selection (tAS). tAS encompasses the time
duration from the instant state capture begins to when the next action is sent.

With the standard RL formulations described in Appendix A.3, we start by formalizing a continuous-
time MDP with the differential equation [23]

ds(t) = F (s(t), a(t))dt+G(s(t), a(t))dβ (1)

where S = Rd is a set of states, A is a set of actions, F : S ×A → S and G : S ×A → S describe
the stochastic dynamics of the environment, and β is a Wiener process [20]. In the continuous-
time setting, ds(t) is analogous to the discrete-time p, defined in Section A.3. Continuous-time
functions s(t) and ai(t) specify the state and i-th action taken by the agent. The agent interacts with
the environment through a state-dependent, deterministic policy function π and the return R of a
trajectory τ = (s(t), a(t)) is given by [6]:

R(τ) =

∫ ∞
t=0

γtr(s(t), a(t))dt, (2)

which leads to a continuous-time value function [23]:

V π(s(t)) = Eτ∼π[R(τ)|s(t)]

= Eτ∼π
[∫ ∞

t=0

γtr(s(t), a(t))dt

]
,

(3)

and similarly, a continuous Q-function:

Qπ(s(t), a, t,H) = Es(·)

[∫ t′=t+H

t′=t

γt
′−tr(s(t′), a(t′))dt′ + γHV π(s(t+H))

]
, (4)
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where H is the constant sampling period between state captures (i.e. the duration of an action
trajectory) and a refers to the continuous action function that is applied between t and t+H . The
expectations are computed with respect to stochastic process p defined in Eq. 1.

In concurrent settings (Figure 1b), an agent selects N action trajectories during an episode, a1, ..., aN ,
where each ai(t) is a continuous function generating controls as a function of time t. Let tAS be the
time duration of state capture, policy inference and any additional communication latencies. At time t,
an agent begins computing the i-th trajectory ai(t) from state s(t), while concurrently executing the
previous selected trajectory ai−1(t) over the time interval (t−H + tAS , t+ tAS). At time t+ tAS ,
where t ≤ t+ tAS ≤ t+H , the agent switches to executing actions from ai(t). The continuous-time
Q-function for the concurrent case from Eq. 4 can be expressed as following:

Qπ(s(t), ai−1, ai, t,H) = Es(·)

[∫ t′=t+tAS

t′=t

γt
′−tr(s(t′), ai−1(t

′))dt′

]
︸ ︷︷ ︸

Executing action trajectory ai−1(t) until t+ tAS

+ Es(·)

[∫ t′=t+H

t′=t+tAS

γt
′−tr(s(t′), ai(t

′))dt′

]
︸ ︷︷ ︸

Executing action trajectory ai(t) until t+H

+Es(·)
[
γHV π(s(t+H))

]︸ ︷︷ ︸
Value function at t+H

(5)

The first two terms correspond to expected discounted returns for executing the action trajectory
ai−1(t) from time (t, t+ tAS) and the trajectory ai(t) from time (t+ tAS , t+ tAS +H).

T ∗c Q̂(s(t), ai−1, ai, t, tAS) =

∫ t′=t+tAS

t′=t

γt
′−tr(s(t′), ai−1(t

′))dt′+

γtAS max
ai+1

EpQ̂π(s(t+ tAS), ai, ai+1, t+ tAS , H − tAS). (6)

Analogously, we define the concurrent Q-function for the discrete-time case:

Qπ(st, at−1, at, t, tAS , H) = r(st, at−1) + γ
tAS
H Ep(st+tAS

|st,at−1)Q
π(st+tAS

, at, at+1, t+ tAS , tAS′ , H − tAS)
(7)

Let tAS′ be the “spillover duration” for action at beginning execution at time t+ tAS (see Figure 1b).
Then the concurrent Bellman Operator, specified by a subscript c, is:

T ∗c Q(st, at−1, at, t, tAS , H) = r(st, at−1) + γ
tAS
H max

at+1

Ep(st+tAS
|st,at−1)Q

π(st+tAS
, at, at+1, t+ tAS , tAS′ , H − tAS).

(8)

See Appendix A.5 for derivation details and contraction proofs. By utilizing these concurrent
Bellman operators with the standardQ-learning formulation, we can maintainQ-learning convergence
guarantees [3]. We conclude that in an concurrent environment, knowledge of the previous action
ai−1 and the action selection latency tAS is sufficient for the Q-learning algorithm to converge. We
describe various representations of this concurrent knowledge in A.6.

4 Experiments

We consider three additional features encapsulating asynchronous knowledge to condition the Q-
function on: 1) Previous Action (ai−1), 2) Action Selection time (tAS), and 3) Vector-to-go (V TG),
which we define as the remaining action to be executed at the instant state is captured.

First, we illustrate the effects of a concurrent control paradigm on value-based DRL methods through
an ablation study on concurrent versions of the standard Cartpole and Pendulum environments.
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(a) Cartpole
(b) Non-Blocking QT-Opt

Figure 2: (a) Environment rewards achieved by DQN with different asynchronous knowledge features
on the concurrent Cartpole task for every hyperparameter in a sweep, sorted in decreasing order. The
results for the concurrent Pendulum task as well as a larger version of this figure are provided in A.8.
(b) An overview of the simulated robotic grasping task. A static manipulator arm attempts to grasp
procedurally generated objects placed in bins front of it.

Table 1: Large-Scale Robotic Grasping Results
Blocking
Actions

VTG Previous
Action

Grasp Success Episode Duration Action Completion

Yes No No 91.53%± 1.04% 120.81s ±9.13s 89.53%± 2.267%
No No No 83.77%± 9.27% 97.16s ±6.28s 34.69%± 16.80%
No Yes No 92.55%± 4.39% 82.98s± 5.74s 47.28%± 14.25%
No No Yes 92.70%± 1.42% 87.15s ±4.80s 50.09%± 14.25%
No Yes Yes 93.49%± 1.04% 90.75s ±4.15s 49.19%± 14.98%

We find that utilizing concurrent knowledge representations are important across many different
hyperparameter combinations. Further analysis and implementation details are described in Appendix
A.7.1.

Next, we evaluate scalability of our approach to a practical robotic grasping task in simulation and the
real world. The details of the setup are shown in Figure 2b and explained in Appendix A.7.2 Table 1
summarizes the performance for blocking and concurrent modes comparing unconditioned models
against the asynchronous knowledge models in simulation, and Table 2 shows a similar comparison in
the real world. Our results show that the asynchronous knowledge models acting in concurrent mode
are able achieve comparable baseline task performance of the blocking execution unconditioned
baseline in simulation, while acting much faster and smoother. The qualitative benefits of faster,
smoother trajectories are drastically apparent when viewing video playback of learned policies2. We
discuss these results further in Appendix A.7.2.

2https://youtu.be/Gr2sZVwrX5w

Table 2: Real-World Robotic Grasping Results.
Blocking Actions VTG Grasp Success Policy Duration

Yes No 81.43% 22.60s ±12.99s
No Yes 68.60% 11.52s± 7.272s
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5 Discussion and Future Work

We presented a theoretical framework to analyze concurrent systems by considering the action
execution and action selection portions of the environment. Viewing this formulation through the lens
of continuous-time value-based reinforcement learning, we showed that by considering asynchronous
knowledge (tAS , previous action, or VTG), the concurrent continuous-time and discrete-time Bellman
Operators remain contractions and thus maintain standard Q-Learning convergence guarantees. Our
theoretical findings were supported by experimental results onQ-learning models acting in concurrent
simple control tasks as well as a complex concurrent large-scale robotic grasping task. In addition to
learning successful concurrent grasping policies, the asynchronous knowledge models were able to
act faster and more fluidly.

While our work focused on Value-based RL methods for both our theoretical framework and our
experimental setups, the concurrent action execution paradigm is an important and understudied
problem for DRL as a whole. A natural extension of this work is to evaluate different types of DRL
methods, such as on-policy learning methods and policy gradient methods. In addition, the true test
of concurrent methods is to attempt them in real-world settings, where robots must truly think and act
at the same time.
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A Appendix

A.1 Related Work

Minimizing Concurrent Effects Although real-world robotics systems are inherently concurrent, it is
sometimes possible to engineer them into approximately blocking systems. For example, using low-latency
hardware [1] and low-footprint controllers [5] minimizes the time spent during state capture and policy inference.
Another option is to design actions to be executed to completion via closed-loop feedback controllers and the
system velocity is decelerated to zero before a state is recorded [12]. In contrast to these works, we tackle the
concurrent action execution directly in the learning algorithm. Our approach can be applied to tasks where it is
not possible to wait for the system to come to rest between deciding new actions.

Algorithmic Approaches Other works utilize algorithmic modifications to directly overcome the challenges
of concurrent control. Previous work in this area can be grouped into five approaches: (1) learning policies
that are robust to variable latencies [24], (2) including past history such as frame-stacking [10], (3) learning
dynamics models to predict the future state at which the action will be executed [7, 2], (4) using a time-delayed
MDP framework [29, 7, 21], and (5) temporally-aware architectures such as Spiking Neural Networks [28, 8],
point processes [27, 14], and adaptive skip intervals [17]. In contrast to these works, our approach is able to (1)
optimize for a specific latency regime as opposed to being robust to all of them, (2) consider the properties of
the source of latency as opposed to force the network to learn them from high-dimensional inputs, (3) avoid
learning explicit forward dynamics models in high-dimensional spaces, which can be costly and challenging, (4)
consider environments where actions are interrupted as opposed to discrete-time time-delayed environments
where multiple actions are queued and each action is executed until completion. The approaches in (5) show
promise in enabling asynchronous agents, but are still active areas of research that have not yet been extended to
high-dimensional, image-based robotic tasks.

A.2 Concurrent Action Environments

In blocking environments (Figure 3a in the Appendix), actions are executed in a sequential blocking fashion
that assumes the environment state does not change between when state is observed and when actions are
executed. This can be understood as state capture and policy inference being viewed as instantaneous from the
perspective of the agent. In contrast, concurrent environments (Figure 3b in the Appendix) do not assume a
fixed environment during state capture and policy inference, but instead allow the environment to evolve during
these time segments.

A.3 Discrete-Time Reinforcement Learning Preliminaries

We use standard reinforcement learning formulations in both discrete-time and continuous-time settings [22].
In the discrete-time case, at each time step i, the agent receives state si from a set of possible states S and
selects an action ai from some set of possible actions A according to its policy π, where π is a mapping from S
to A. The environment returns the next state si+1 sampled from a transition distribution p(si+1|si, ai) and a
reward r(si, ai). The return for a given trajectory of states and actions is the total discounted return from time
step i with discount factor γ ∈ (0, 1]: Ri =

∑∞
k=0 γ

kr(si+k, ai+k). The goal of the agent is to maximize the
expected return from each state si. TheQ-function for a given stationary policy π gives the expected return when
selecting action a at state s: Qπ(s, a) = E[Ri|si = s, ai = a]. Similarly, the value function gives expected
return from state s: V π(s) = E[Ri|si = s].

The default blocking environment formulation is detailed in Figure 1a.
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A.4 Defining Blocking Bellman operators

As introduced in Section 3, we define a continuous-time Q-function estimator with concurrent actions.

Q̂(s(t), ai−1, ai, t,H) =

∫ t′=t+tAS

t′=t
γt
′−tr(s(t′), ai−1(t

′))dt′+ (9)∫ t′′=t+H

t′′=t+tAS

γt
′′−tr(s(t′′), ai(t

′′))dt′′ + γHV (s(t+H)) (10)

=

∫ t′=t+tAS

t′=t
γt
′−tr(s(t′), ai−1(t

′))dt′+ (11)

γtAS

∫ t′′=t+H

t′′=t+tAS

γt
′′−t−tAS r(s(t′′), ai(t

′′))dt′′ + γHV (s(t+H)) (12)

=

∫ t′=t+tAS

t′=t
γt
′−tr(s(t′), ai−1(t

′))dt′+ (13)

γtAS [

∫ t′′=t+H

t′′=t+tAS

γt
′′−t−tAS r(s(t′′), ai(t

′′))dt′′ + γH−tASV (s(t+H))] (14)

We observe that the second part of this equation (after γtAS ) is itself a Q-function at time t+ tAS . Since the
future state, action, and reward values at t+ tAS are not known at time t, we take the following expectation:

Q(s(t), ai−1, ai, t,H) =

∫ t′=t+tAS

t′=t
γt
′−tr(s(t′), ai−1(t

′))dt′+ (15)

γtASEsQ̂(s(t), ai, ai+1, t+ tAS , H − tAS) (16)
which indicates that the Q-function in this setting is not just the expected sum of discounted future rewards, but
it corresponds to an expected future Q-function.

In order to show the discrete-time version of the problem, we parameterize the discrete-time concurrent Q-
function as:

Q̂(st, at−1, at, t, tAS , H) = r(st, at−1) + γ
tAS
H Ep(st+tAS

|st,at−1)r(st+tAS , at)+ (17)

γ
H
H Ep(st+H |st+tAS

,at)V (st+H) (18)

which with tAS = 0, corresponds to a synchronous environment.

Using this parameterization, we can rewrite the discrete-time Q-function with concurrent actions as:

Q̂(st, at−1, at, t, tAS , H) = r(st, at−1) + γ
tAS
H [Ep(st+tAS

|st,at−1)r(st+tAS , at)+ (19)

γ
H−tAS

H Ep(st+H |st+tAS ,at)V (st+H)] (20)

= r(st, at−1) + γ
tAS
H Ep(st+tAS

|st,at−1)Q̂(st, at, at+1, t+ tAS , tas′ , H − tAS)
(21)

A.5 Contraction Proofs for the Blocking Bellman operators

Proof of the Discrete-time Blocking Bellman Update

Lemma A.1. The traditional Bellman operator is a contraction, i.e.:
||T ∗Q∞(s, a)− T ∗Q∈(s, a)|| ≤ c||Q1(s, a)−Q2(s, a)||, (22)

where T ∗Q(s, a) = r(s, a) + γmaxa′ EpQ(s′, a′) and 0 ≤ c ≤ 1.

Proof. In the original formulation, we can show that this is the case as following:
T ∗Q1(s, a)− T ∗Q2(s, a) (23)

= r(s, a) + γmax
a′

Ep[Q1(s
′, a′)]− r(s, a)− γmax

a′
Ep[Q2(s

′, a′)] (24)

= γmax
a′

Ep[Q1(s
′, a′)−Q2(s

′, a′)] (25)

≤ γ sup
s′,a′

[Q1(s
′, a′)−Q2(s

′, a′)], (26)

with 0 ≤ γ ≤ 1 and ||f ||∞ = supx[f(x)].
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Figure 3: The execution order of different stages are shown relative to the sampling period H as well
as the latency tAS . (a): In “blocking” environments, state capture and policy inference are assumed to
be instantaneous. (b): In “concurrent” environments, state capture and policy inference are assumed
to proceed concurrently to action execution.

Similarly, we can show that the updated Bellman operators introduced in 3 are contractions as well.

Lemma A.2. The concurrent discrete-time Bellman operator is a contraction.

Proof of Lemma A.2

Proof.

T ∗c Q1(st, ai−1, ai, t, tAS , H)− T ∗c Q2(st, ai−1, ai, t, tAS , H) (27)

= r(st, ai−1) + γ
tAS
H max

ai+1

Ep(st+tAS
|st,at−1)Q1(st, ai, ai+1, t+ tAS , tAS′ , H − tAS) (28)

− r(st, ai−1)− γ
tAS
H max

ai+1

Ep(st+tAS
|st,at−1)Q2(st, ai, ai+1, t+ tAS , tAS′ , H − tAS) (29)

= γ
tAS
H max

ai+1

Ep(st+tAS
|st,ai−1)[Q1(st, ai, ai+1, t+ tAS , tAS′ , H − tAS)−Q2(st, ai, ai+1, t+ tAS , tAS′ , H − tAS)]

(30)

≤ γ
tAS
H sup

st,ai,ai+1,t+tAS ,tAS′ ,H−tAS

[Q1(st, ai, ai+1, t+ tAS , tAS′ , H − tAS)−Q2(st, ai, ai+1, t+ tAS , tAS′ , H − tAS)]

(31)

Lemma A.3. The concurrent continuous-time Bellman operator is a contraction.

Proof of Lemma A.3

Proof. To prove that this the continuous-time Bellman operator is a contraction, we can follow the discrete-time
proof, from which it follows:

T ∗c Q1(s(t), ai−1, ai, t, tAS)− T ∗c Q2(s(t), ai−1, ai, t, tAS) (32)

= γtAS max
ai+1

Ep[Q1(s(t), ai, ai+1, t+ tAS , H − tAS)−Q2(s(t), ai, ai+1, t+ tAS , H − tAS)] (33)

≤ γtAS sup
s(t),ai,ai+1,t+tAS ,H−tAS

[Q1(s(t), ai, ai+1, t+ tAS , H − tAS)−Q2(s(t), ai, ai+1, t+ tAS , H − tAS)]

(34)
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Figure 4: Concurrent knowledge representations can be visualized through an example of a 2-D
pointmass discrete-time toy task. Vector-to-go represents the remaining action that may be executed
when the current state st is observed. Previous action represents the full commanded action from the
previous timestep.

A.6 Concurrent Knowledge Representation

While we have shown that knowledge of the concurrent system properties (tAS and at−1, as defined previously
for the discrete-time case) is theoretically sufficient, it is often hard to accurately predict tAS during inference
on a complex robotics system. In order to allow practical implementation of our algorithm on a wide range
of RL agents, we consider three additional features encapsulating concurrent knowledge used to condition the
Q-function: (1) Previous action (at−1), (2) Action selection time (tAS), and (3) Vector-to-go (V TG), which
we define as the remaining action to be executed at the instant the state is measured. We limit our analysis
to environments where at−1, tAS , and V TG are all obtainable and H is held constant. Previous action at−1

is the action that the agent executed at the previous timestep. Action selection time tAS is a measure of how
long action selection takes, which can be represented as either a categorical or continuous variable; in our
experiments, which take advantage of a bounded latency regime, we normalize action selection time using these
known bounds. Vector-to-go VTG is a feature that combines at−1 and st by encoding the remaining amount of
at−1 left to execute. See Figure 4 for a visual comparison.

We note that at−1 is available across the vast majority of environments and it is easy to obtain. Using tAS , which
encompasses state capture, communication latency, and policy inference, relies on having some knowledge of
the concurrent properties of the system. Calculating V TG requires having access to some measure of action
completion at the exact moment when state is observed. When utilizing a first-order control action space, such
as joint angle or desired pose, V TG is easily computable if proprioceptive state is measured and synchronized
with state observation. In these cases, VTG is an alternate representation of the same information encapsulated
by at−1 and the current state.

A.7 Experiment Results and Implementation Details

A.7.1 Cartpole and Pendulum Ablation Studies

Here, we describe the results implementation details of the toy task Cartpole and Pendulum experiments in
Section 4.

To estimate the relative importance of different asynchronous knowledge representations, we conduct an
analysis of the sensitivity of each type of asynchronous knowledge representations to combinations of the other
hyperparameter values, shown in Figure 2a. While all combinations of asynchronous knowledge representations
increase learning performance over baselines that do not leverage this information, the clearest difference stems
from including VTG. In Figure 6, we conduct a similar analysis but on a Pendulum environment where tAS is
fixed every environment; thus, we do not focus on tAS for this analysis but instead compare the importance of
VTG with frame-stacking previous actions and observations. While frame-stacking helps nominally, the majority
of the performance increase results from utilizing information from VTG.
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For the environments, we use the 3D MuJoCo implementations of the Cartpole-Swingup and
Pendulum-Swingup tasks in DeepMind Control Suite [25]. We use discretized action spaces for first-order
control of joint position actuators. For the observation space of both tasks, we use the default state space of
ground truth positions and velocities.

For the baseline learning algorithms, we use the TensorFlow Agents [9] implementations of a Deep Q-Network
agent, which utilizes a Feed-forward Neural Network (FNN), and a Deep Q-Recurrent Neutral Network agent,
which utilizes a Long Short-Term Memory (LSTM) network. Learning parameters such as learning_rate,
lstm_size, and fc_layer_size were selected through hyperparameter sweeps.

To approximate different difficulty levels of latency in concurrent environments, we utilize different parameter
combinations for action execution steps and action selection steps (tAS). The number of action execution steps
is selected from {0ms, 5ms, 25ms, or 50ms} once at environment initialization. tAS is selected from {0ms, 5ms,
10ms, 25ms, or 50ms} either once at environment initialization or repeatedly at every episode reset. The selected
tAS is implemented in the environment as additional physics steps that update the system during simulated
action selection.

Frame-stacking parameters affect the observation space by saving previous observations and actions. The number
of previous actions to store as well as the number of previous observations to store are independently selected
from the range [0, 4]. Concurrent knowledge parameters, as described in Section 4, include whether to use VTG
and whether to use tAS . Including the previous action is already a feature implemented in the frame-stacking
feature of including previous actions. Finally, the number of actions to discretize the continuous space to is
selected from the range [3, 8].

A.7.2 Large Scale Robotic Grasping

Simulated Environment We simulate a 7 DoF arm with an over-the-shoulder camera (see Figure 2ba).
A bin in front of the robot is filled with procedurally generated objects to be picked up by the robot and a
sparse binary reward is assigned if an object is lifted off a bin at the end of an episode. We train a policy with
QT-Opt [12], a deep Q-Learning method that utilizes the cross-entropy method (CEM) to support continuous
actions. In blocking mode, a displacement action is executed until completion: the robot uses a closed-loop
controller to fully execute an action, decelerating and coming to rest before observing the next state. In concurrent
mode, an action is triggered and executed without waiting, which means that the next state is observed while the
robot remains in motion. States are represented in form of RGB images and actions are continuous Cartesian
displacements of the gripper 3D positions and yaw. In addition, the policy commands discrete gripper open
and close actions and may terminate an episode. In blocking mode, a displacement action is executed until
completion: the robot uses a closed loop controller to fully execute an action, decelerating and coming to rest
before observing the next state. In concurrent mode, an action is triggered and executed without waiting, which
means that the next state is observed while the robot remains in motion. It should be noted that in blocking
mode, action completion is close to 100% unless the gripper moves are blocked by contact with the environment
or objects; this causes average blocking mode action completion to be lower than 100%, as seen in Table 1.

Table 1 summarizes the performance for blocking and concurrent modes comparing unconditioned models
against the concurrent knowledge models described in Section A.6. Our results indicate that the VTG model
acting in concurrent mode is able to recover baseline task performance of the blocking execution unconditioned
baseline, while the unconditioned baseline acting in concurrent model suffers some performance loss. In addition
to the success rate of the grasping policy, we also evaluate the speed and smoothness of the learned policy
behavior. Concurrent knowledge models are able to learn faster trajectories: episode duration, which measures
the total amount of wall-time used for an episode, is reduced by 31.3% when comparing concurrent knowledge
models with blocking unconditioned models, even those that utilize a shaped timestep penalty that reward faster
policies.

When switching from blocking execution mode to concurrent execution mode, we see a significantly lower
action completion, measured as the ratio from executed gripper displacement to commanded displacement,
which expectedly indicates a switch to a concurrent environment. The concurrent knowledge models have
higher action completions than the unconditioned model in the concurrent environment, which suggests that
the concurrent knowledge models are able to utilize more efficient motions, resulting in smoother trajectories.
The qualitative benefits of faster, smoother trajectories are drastically apparent when viewing video playback of
learned policies 2.

Real robot results In addition, we evaluate qualitative policy behaviors of concurrent models compared to
blocking models on a real-world robot grasping task, which is shown in Figure 2bb. As seen in Table 2, the
models achieve comparable grasp success, but the concurrent model is 49% faster than the blocking model in
terms of policy duration, which measures the total execution time of the policy (this excludes the infrastructure
setup and teardown times accounted for in episode duration, which can not be optimized with concurrent actions).
In addition, the concurrent VTG model is able to execute smoother and faster trajectories than the blocking
unconditioned baseline, which is clear in video playback2.
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Algorithm We train a policy with QT-Opt [12], a Deep Q-Learning method that utilizes the Cross-Entropy
Method (CEM) to support continuous actions. A Convolutional Neural Network (CNN) is trained to learn the
Q-function conditioned on an image input along with a CEM-sampled continuous control action. At policy
inference time, the agent sends an image of the environment and batches of CEM-sampled actions to the CNN
Q-network. The highest-scoring action is then used as the policy’s selected action. Compared to the formulation
in (author?) [12], we also add a concurrent knowledge feature of VTG and/or previous action at−1 as additional
input to the Q-network. Algorithm 1 shows the modified QT-Opt procedure.

Algorithm 1: QT-Opt with Concurrent Knowledge
Initialize replay buffer D;
Initialize random start state and receive image o0;
Initialize concurrent knowledge features c0 = [V TG0 = 0, at−1 = 0, tAS = 0];
Initialize environment state st = [o0, c0];
Initialize action-value function Q(s, a) with random weights θ;
Initialize target action-value function Q̂(s, a) with weights θ̂ = θ;
while training do

for t = 1, T do
Select random action at with probability ε, else at = CEM(Q, st; θ);
Execute action in environment, receive ot+1, ct, rt;
Process necessary concurrent knowledge features ct, such as V TGt, at−1, or tAS ;
Set st+1 = [ot+1, ct];
Store transition (st, at, st+1, rt) in D;
if episode terminates then

Reset st+1 to a random reset initialization state;
Reset ct+1 to 0;

end
Sample batch of transitions from D;
for each transition (si, ai, si+1, ri) in batch do

if terminal transition then
yi = ri;

else
Select âi+1 = CEM(Q̂, si; θ̂);
yi = ri + γQ̂(si+1, âi+1);

end
Perform SGD on (yi −Q(si, ai; θ)

2 with respect to θ;
end
Update target parameters Q̂ with Q and θ periodically;

end
end

For simplicity, the algorithm is described as if run synchronously on a single machine. In practice, episode
generation, Bellman updates and Q-fitting are distributed across many machines and done asynchronously; refer
to [12] for more details. Standard DRL hyperparameters such as random exploration probability (ε), reward
discount (γ), and learning rate are tuned through a hyperparameter sweep. For the time-penalized baselines in
Table 1, we manually tune a timestep penalty that returns a fixed negative reward at every timestep. Empirically
we find that a timestep penalty of −0.01, relative to a binary sparse reward of 1.0, encourages faster policies.
For the non-penalized baselines, we set a timestep penalty of −0.0.

A.8 Figures

See Figure 5 and Figure 6.
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Figure 5: Environment rewards achieved by DQN with different network architectures [either a
feedforward network (FNN) or a Long Short-Term Memory (LSTM) network] and different concur-
rent knowledge features [Unconditioned, vector-to-go (VTG), or previous action and tAS] on the
concurrent Cartpole task for every hyperparameter in a sweep, sorted in decreasing order. Providing
the critic with VTG information leads to more robust performance across all hyperparameters. This
figure is a larger version of 2a.

Figure 6: Environment rewards achieved by DQN with a FNN and different frame-stacking and
concurrent knowledge parameters on the concurrent Pendulum task for every hyperparameter in a
sweep, sorted in decreasing order.
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