
SwarmNet: Towards Imitation Learning of
Multi-Robot Behavior with Graph Neural Networks

Siyu Zhou∗

Arizona State University
Tempe, Arizona, USA
siyu.zhou@asu.edu

Mariano J. Phielipp
Intel AI Lab

Chandler, Arizona, USA
mariano.j.phielipp@intel.com

Jorge Sefair
Arizona State University
Tempe, Arizona, USA

jorge.sefair@asu.edu

Sara I. Walker
Arizona State University
Tempe, Arizona, USA

sara.i.walker@asu.edu

Heni Ben Amor
Arizona State University
Tempe, Arizona, USA
hbamor@asu.edu

Abstract

In this paper, we propose SwarmNet – a neural network architecture that can learn
to predict and imitate the behavior of an observed swarm of agents in a centralized
manner. Tested on artificially generated swarm motion data, the network achieves
high levels of prediction accuracy and imitation authenticity. We compare our
model to previous approaches for modelling interaction systems and finally discuss
an extension of SwarmNet that can deal with nondeterministic, noisy, and uncertain
environments, as often found in robotics applications.

1 Introduction

Multi-Robot Systems (MRS) [1] describe groups of robotic agents that collectively perform complex
tasks in a distributed and parallel manner through repeated interactions among each other and the
environment. Such systems have attracted considerable attention in recent years with remarkable
successes in a number of application domains, including defense, agriculture, logistics, disaster
management, and entertainment.

In this paper, we propose an alternative approach based on learning-from-demonstration (LfD) [2]
for specifying group behavior in multi-robot systems. The LfD methodology has a rich history in
single-robot systems, with a number of successful applications in real-world tasks such as table-tennis,
manipulation, locomotion, and helicopter flying [3]. We extend this methodology to the MRS case by
introducing a novel graph neural network architecture that can be trained from execution traces of
a swarm. The introduced graph neural network, called SwarmNet, extracts all rules governing the
group behavior from data alone, i.e., sequences of agent positions and velocities. Once a SwarmNet is
extracted, it can be used to perform complex inferences including prediction, imitation or replacement
of an existing swarm from a centralized view point.

2 Methodology

Learning is achieved by recording execution traces of an observed swarm. Execution traces are
discretely sampled trajectories specifying the position and velocity of each agent at time step t. Each
trace represents a demonstration of the group behavior as observed in the swarm. The set of traces is,

∗

NeurIPS 2019 Workshop on Robot Learning: Control and Interaction in the Real World, Vancouver, Canada



Figure 1: Overview of the proposed methodology: we collect training data from an observed swarm
to learn a compact graph neural network representation called SwarmNet. In turn, it can be used to
predict future behavior, augment an existing swarm with more agents, or create a clone of the swarm
with similar behavior.

1-D Convolutions Graph Convolution MLP LayersPrevious States Future States

A
g

e
n

t 
S

ta
te

s
C

o
n

te
x
t

A
g

e
n

t 
S

ta
te

s

Figure 2: Diagram of the network architecture for SwarmNet: Letters along sides indicate dimensions.
T is the number of time steps, N is the number of agents in the system, and D is the length of the
state vector. H is the size of the encoded state vector, which is the size of the last layer of an MLP.
Node states vi and vj are passed through Graph Convolution to produce interactions eij

in turn, used to train SwarmNet. Note that SwarmNet needs to account for both inter-agent interactions
(e.g. how the members influence each other’s behavior), as well as agent-environment interactions
with environment context modeled as compliment information to agent states. For example, the
obstacle needs to be taken into account to generate reasonable behaviors that avoid collisions with
the environment.

Fig. 2 describes the full architecture of SwarmNet. Input to the network is a sequence of previous
robot states, as well as contextual information regarding the environment. Robot states are specified
by a time window of positions and velocities of either (1) observed agents, or (2) controlled agents,
depending on the mode of operation. Assuming an N -agent swarm, the dynamical state of agent
i ∈ N can be written as si(t) = [xi(t), ẋi(t)], where xi(t) is the position and ẋi(t) is the velocity of
agent i at timestep t. The output of the network are the future state vectors si(t+ 1), given the state
history of the swarm system and context. Multistep prediction or imitation is achieved by reattaching
the output of next step back to the end of input sequence.

The states si(t) and context c(t) are concatenated and first passed through a series of one-dimensional
convolution layers along the time axis. These convolutions allow the network to extract information
regarding short-term dynamics of a single trajectory. The evolution of the agents’ dynamic states
is a result of pair-wise interactions between them. The dynamics of the system and the underlying
elementary interactions can be formulated as a graph, with nodes being the agents, their dynamical
states being node states, the interaction relations being edges, and the interaction effects being edge
states. To avoid any limiting assumptions or constraints, the states are embedded in a fully-connected
directed graph which models all relationships, i.e., the learnable functions along the graph edges
define whether agents are interacting or not. To process the interactions and update the node states
for predicting the next step, a graph convolution over our representation is employed. The final set
of operations in SwarmNet is a set of traditional fully-connected neural network layers. These final



Method Boids Helbing Chaser
Kipf’s GNN 17.45± 1.00 19.61± 0.43 14.23± 0.05
LSTM 41.20± 0.24 42.88± 0.75 126.3± 3.5
SwarmNet 10.47± 0.91 3.855± 0.305 3.691± 0.042
SwarmNet (Context) 2.778± 0.066 0.484± 0.023 3.691± 0.042

Table 1: Normalized MSE loss for long term prediction (40 steps) of models on data sets of different
swarms

layers take the result of the graph convolution as input and generate a window of predictions over the
future states of all agents.

Training of the network is performed in a supervised fashion by comparing the predicted agent
states (containing positions and velocities) with the ground-truth states in the time series. The mean
squared-error (MSE) is used as the loss function L for training and as the metric for evaluation. The
loss is normalized over the "natural skip", i.e., the MSE of state vectors between two consecutive
steps in the ground truth trajectories. We scaffold the training by gradually increasing the prediction
horizon. The curriculum learning has the benefit of starting with a simpler version of the task (i.e.
using limited prediction horizon) and slowly exposing the network to more complex, long-term
predictions and encourages the model to learn the true dynamics of the system rather than potentially
overfitting to fixed-term predictions.

Figure 3: From left to right: four different predictions of the swarm behavior using SwamNet. In
each one of the four experiments, the obstacle is place slightly more to the right. The colored arrows
show the movement of 5 boids, while the gray dashed lines are the ground truth trajectories. The
black circle represents the obstacle.

3 Experiments and Results

We generated training data using popular techniques for synthesizing swarm behavior, e.g., flocking
and swarming models. In turn, we compared different versions of SwarmNet to the graph neural
network (GNN) in [4] and the LSTM network method in [5].

Our data set consists of motion data produced using the Boids model [6], the Helbing model [7], and
a simple chaser model. In the Boids model, N = 5 agents demonstrate flocking behaviors while
approaching a common goal location and avoiding obstacles. The Helbing model [7] generates swarm
behavior via repulsive forces only. The final model, called chaser, places a set of agents on a circle.
Each of these agents generates steering actions that make it chase another agent of the swarm. For
each of the above models we generate data sets by running the simulation for about 50 time steps
while recording the agent positions and velocities, as well as the environmental variables. In both the
Boids and Helbing model, the environmental variable is the positions of obstacles.

The first experiment focuses on the prediction accuracy when compared to other methods, in particular
the method in [4] and LSTMs [5]. Table 1 summarizes the loss of the methods across the three
data sets. We performed the experiment for prediction horizon of 40 steps. The best performance is
achieved by SwarmNet with contextual inputs. Removing the context information has a significant
impact on the SwarmNet performance, in particular in the long-term prediction case (right side of the
table). In general, SwarmNet outperforms all other methods on all data sets and in both conditions.
An interesting aspect of these results is that SwarmNet was only trained on data for predictions of up
to 10 steps. Despite that, it correctly learned to make accurate predictions for 40 steps and beyond
indicating that it focused on the true dynamics of the task.



Fig. 3 shows the prediction results for different locations of the obstacle (black circle). We see that the
SwarmNet predictions are qualitatively implementing the correct swarming and avoidance behavior,
even if small deviations from the ground truth occur. The rightmost example in Fig. 3 shows an
interesting behavior in which the orange agent is first trying to circumvent the object on the right side
and then turns to head back to goal location. While unintuitive, this behavior is also existent in the
ground truth data. Fig. 4 shows the prediction on the chaser swarm by SwarmNet and GNN in [4].

SwarmNet Kipf's GNN

Figure 4: Qualitative comparison of SwarmNet and the approach in [4]. Two samples of predicted
trajectories (scattered arrows) against the ground truth trajectories (grey dashed lines) for a 5 agent
system performing chasing motions. Top row: traces of all 5 agents. Bottom: traces of only two
agents for visibility.

10 0 10
0.0

0.2

0.4

10 0 10
0.0

0.2

0.4

X

y

Time step 30

Time step 30

Figure 5: Predictions for the nondeterministic behavior of a swarm with 5 boids in the presence of
uncertainty. Left graph: the stochastic output predictions of the SwarmNet network for all agents.
Middle: the predictions for only the blue and the red agent, for visual clarity. Right: The probability
distributions over x and y coordinates of all agents at time step 30. We can see that the predictions for
the red agent bifurcate to the left and right side of the obstacle.

We also investigated how well the SwarmNet can deal with uncertainty, noise and nondeterminism.
In particular, we simulated both perceptual noise, as well as actuation noise. Perceptual noise was
incorporated by adding a value sampled from a univariate normal distribution N (0, 1) to input for
each dimension separately. Actuation noise is simulated by randomly dropping out neurons in test
time. Fig. 5 depicts the stochastic outputs of our SwarmNet model for the Boids data. We can see in
Fig. 5 (left) that the predictions now form envelopes according to the uncertainty at different time
steps in the future. In general, the uncertainty appears to grow with larger prediction horizons. In
the case of the red agent, the predictions slightly bifurcate around the obstacle. This clearly shows
that the model is able to predict multiple potential futures of an agent (and the swarm) based on
the inherent uncertainty of the task and environment. On the right, the probability distributions for
discretized x- and y-coordinates of red and orange agents are multimodal, which reinforces the insight
that our predictions can produce multiple, diverse, and potentially conflicting future states.

4 Conclusion

In this paper, we presented a neural network architecture, called SwarmNet, which learns to predict
and imitate behavior of an observed swarm. The network uses a combination of one-dimensional



convolutions, graph convolutions, contextual inputs, along with a curriculum learning scheme
to efficiently extract the swarm dynamics from positions and velocities of a set of agents. We
showed that SwarmNet achieves high levels of prediction accuracy and that it can even be applied to
nondeterministic and uncertain environments. For future work, we want to investigate how different
application domains and tasks affect the sample complexity of the method, and the effectiveness of a
decentralized implementation of the network.

References

[1] T. Arai, E. Pagello, L. E. Parker et al., “Advances in multi-robot systems,” IEEE Transactions on
robotics and automation, vol. 18, no. 5, pp. 655–661, 2002.

[2] S. Schaal, “Is imitation learning the route to humanoid robots?” Trends in cognitive sciences,
vol. 3, no. 6, pp. 233–242, 1999.

[3] T. Osa, J. Pajarinen, G. Neumann, J. A. Bagnell, P. Abbeel, J. Peters et al., “An algorithmic
perspective on imitation learning,” Foundations and Trends R© in Robotics, vol. 7, no. 1-2, pp.
1–179, 2018.

[4] T. Kipf, E. Fetaya, K.-c. W. Max, and W. Richard, “Neural Relational Inference for Interacting
Systems,” 2018.

[5] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computation, vol. 9, no. 8,
pp. 1735–1780, 1997.

[6] C. W. Reynolds, “Steering behaviors for autonomous characters,” Game Developers Conference,
pp. 763–782, 1999.

[7] D. Helbing, I. Farkas, and T. Vicsek, “Simulating dynamical features of escape panic,” Nature,
vol. 407, no. 6803, pp. 487–490, 2000.


	Introduction
	Methodology
	Experiments and Results
	Conclusion

