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Abstract

Existing approaches for visuomotor robotic control typically require characterizing
the robot in advance by calibrating the camera or performing system identification.
We propose MAVRIC, an approach that works with minimal prior knowledge of
the robot’s morphology, and requires only a camera view containing the robot
and its environment and an unknown control interface. MAVRIC revolves around
a mutual information-based method for self-recognition, which discovers visual
“control points” on the robot body within a few seconds of exploratory interaction,
and these control points in turn are then used for visual servoing. MAVRIC can
control robots with imprecise actuation, no proprioceptive feedback, unknown
morphologies including novel tools, unknown camera poses, and even unsteady
handheld cameras. We demonstrate our method on visually-guided 3D point
reaching, trajectory following, and robot-to-robot imitation.

1 Introduction

Current robotic control methods typically require precise knowledge of the robot’s configuration and
kinematics. As an example, a typical rigid robot arm’s degrees of freedom are fully specified by its
joint angles, available through servomotor encoders. Such proprioception-driven control methods
do not generalize to many important settings. What if the robot were made of deformable material,
so that its degrees of freedom are not easily enumerated or measured? Even for the rigid robot arm
above, introduce a previously unseen chalk piece into its gripper and the position of its tip is now
unknown and therefore not possible to control. Humans easily handle such control tasks by relying
on rich sensory feedback, such as from vision, rather than purely on precise proprioception.

We propose MAVRIC, a self-recognition-enabled approach to IBVS that works “out of the box” on
arbitrary new or altered robots with no manual specification of any points of interest. We use simple
techniques to accomplish this: a mutual information measure [1] evaluates the responsiveness of
various points in the environment, tracked using Lucas-Kanade optical flow computation [2], to the
robot control commands. MAVRIC is lightweight, flexible, and fast to adapt, producing responsive
“control points” for a new robot within a few seconds of interaction. As we will show, MAVRIC handles
settings that are challenging to today’s state-of-the-art robotic control approaches: imprecise actuation,
unknown robot morphologies, unknown camera poses, novel unmodeled tools, and unsteady handheld
cameras.

2 MAVRIC: Morphology-Agnostic Visual Robotic Control

We operate in the following setting: at each time step t, a controller has access to raw RGBD image
observations from a camera, and the ability to set a d-dimensional control input A(t) for the robot.
The images contain the robot’s body as well as other portions of its environment.

To maximize generality, we make very few assumptions about factors that are commonly treated as
fully known in robotic control: (i) We do not know the nature of robot’s embodiment, such as the
degrees of freedom, rigidity, or the number and lengths of links in a robot arm. (ii) For the control
interface, aside from the standard assumptions made in uncalibrated visual servoing, we make one
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exploration video sparse responsiveness new track seeds dense responsiveness ✁nal MRCP (top-15)

Figure 1: [Best seen in pdf] Self-recognition for MRCP search illustrated on data from a handheld, shaky
camera. Frame 1 shows the camera view of the robot during exploration. Frame 2 shows the results of coarse
tracking on the exploration video, where the track points overlaid on the image are colored more green if they
are more responsive. Frame 3 shows how fine tracking is initialized on the same video around most responsive
tracks from the coarse stage, and Frame 4 shows surviving tracks after the fine stage of MRCP search. Frame 5
shows the final result, with the top-15 control points in green and their average position in red. Video in Supp.

additional assumption that the displacements of points on the robot are a probabilistic function of the
control commands. We do not assume any kind of camera calibration whatsoever.

2.1 Self-Recognition: Robot as a Collection of Responsive Particles

In the self-recognition phase, we aim to resolve the question: what is the body of the robot? We start
by decomposing the observable environment containing the robot into “particles”— points in 3D
space that may or may not be part of its body. Each particle Pi has an associated position Si(t) in
RGBD camera coordinates (x, y, depth) from our uncalibrated camera.

Responsiveness We define the responsiveness of a particle as the mutual information (MI) [1; 3]
between its motions and the control inputs. Specifically, we execute a random sequence of exploratory
control commands A(t) assign a non-negative responsiveness score to each particle Pi:

Ri , I(∆Si;A), (1)

where ∆Si(t) = Si(t+ 1)− Si(t) is the change in position of Pi in response to A(t), and I(·; ·) is
the MI between two random variables.

Control Points and MRCP We define the “body” Bδ of a robot as the set of particles whose

responsiveness is higher than some threshold δ: Bδ , {Pi : Ri > δ}. We call the constituent
particles of this set “control points.” In Appendix A, we discuss why this aligns with our intuitive
definition of a robot’s body, in our setting.

The maximally responsive control point (MRCP) P ∗ is the particle with the highest responsiveness
R∗ = maxi Ri, with position S∗(t). In practice, we average the positions of the top-k most
responsive particles to compute a robust MRCP.

Handling Rigid Objects Points on a rigid object, such as a single link of a standard robot arm, all
exhibit the same motion, modulo invertible affine transformations. Mutual information is known
to be invariant under such smooth, invertible mappings (see [4] for a simple proof). This has the
problematic implication that points on a rigid object all have the same responsiveness score. To break
such ties, we preferentially select points with larger motions by exploiting the fact that any loss of
precision leads naturally to a preference for large motions. We add Gaussian noise to ∆Si in Eq. 1 to
artificially lower the precision and express this preference for large motions.

Implementation Details For tracking the positions Si(t) of particles over time, we use the Lucas-
Kanade optical flow estimator [2]. We use the mutual information estimator proposed in [4], as
implemented in [5]. In our experiments, control points on a robot arm are discovered within 20
seconds of exploration, sufficient to execute about 100 randomly sampled small actions. Finally, we
find it useful to search for control points in a coarse-to-fine manner, using the most responsive points
to initialize a second round of tracking. See Appendix B for more details. Fig 1 shows an example of
the various stages of MRCP identification with a handheld, shaky camera.

Prior Work Prior methods have been proposed that learn to recognize the robot’s body [6; 7; 8].
Early methods use simple temporal correspondences between actions and observed motion in the
visual field to identify the body — [6] use learned characteristic response delays, and [8] rely on
periodicity. Closest to MAVRIC, [7] also use a mutual information-based approach for self-recognition,
but different from MAVRIC, they assume known aspects of the robot’s morphology, such as the number
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of its links and the visual appearance of its body, and the correspondences between action dimensions
and the various servos on the robot, and also rely on manually demonstrated robot poses during
exploration. Despite these advantages, they report requiring four minutes of exploration, compared
to about 20s for MAVRIC. They also propose a different approach to tracking, which we empirically
compare against in our setting.

2.2 Visual Servoing in Control Point Coordinates

Once the MRCP is identified, MAVRIC performs uncalibrated image-based visual servoing [9; 10; 11;
12; 13; 14; 15; 16; 17; 18; 19; 20; 21; 22; 23; 24; 25] to transport the MRCP point S∗ to a specified
goal point G. We use online regression to fit (A,∆S∗) tuples to estimate local Jacobian matrices “on
the fly,” using modified Broyden updates [11; 12]. See Appendix C for more details. The Jacobian
matrix initialization J0 is computed as follows: we start at a random arm position, sequentially set
the control inputs Ai to scaled unit vectors ǫei along each control dimension, and set the i-th column
of J0 to the response ∆Si/ǫ. In our experiments, we repeat this initialization procedure whenever
servoing has failed to get closer to the target in the last 20 steps.

3 Experiments

We perform experiments using the REPLAB standardized hardware platform [26; 27] with an
imprecise low-cost manipulator (Trossen WidowX) and an RGB-D camera (Intel Realsense SR300).
We evaluate how well MAVRIC’s self-recognition phase works under varied conditions, and also the
overall effectiveness of MAVRIC for visuomotor servoing tasks.

3.1 Self-Recognition: Discovering End Effectors, Tools, and Robot Morphology

In each run, a sequence of 100 random exploratory control commands are executed, which requires
about 20 seconds of interaction. Fig 3 shows some example results of detected control points and
MRCP points in different settings, with various tools inserted in the end effector. We quantitatively
evaluate how closely MAVRIC’s MRCP matches the manually annotated “true end-effector” of the
robot. We introduce a simple baseline that selects the points that move the largest distance over
the exploration phase (“Max-motion”). Fig 2 shows this end-effector identification error, in terms
of how far the MRCP was from a single "end-effector"/"tooltip" point ("point identification error")
and also whether or not the MRCP was on the tool held in the robot ("region identification rate").
Max-motion peforms very poorly in nearly all settings, while most variants of MAVRIC get close to
perfect end-effector region identification success rate.

Appendix D contains more detailed explanations of the MAVRC ablations in Fig 2. Additionally,
Appendix E also evaluates MAVRC self-recognition in additional settings, such as with a shaky hand-
held camera. It also shows how MAVRC succeeds in the presence of moving distractors, where other
identical robots are present in the scene, and how MAVRIC deteriorates gracefully under exploration
sequences shorter than the 20s used in the above experiments. Appendix F compares MAVRIC’s
tracking system with the approach proposed in [7].

3.2 Visually Guided 3D Point Reaching, Trajectory Following, and Imitation

We now evaluate MAVRIC (self-recognition + servoing) on 3D-point reaching tasks. We manually
set 9 goal positions in the RGBD camera view at varying elevations and azimuths centered at the
end effector’s initial position at a distance of about 15 cm. We compare MAVRIC to two methods that
have access to additional manually specified information: “Oracle VS,” which servos a manually
annotated end effector using the same visual servoing approach (based on [11; 12]) as our method,
and “ROS MoveIt” [28] which has knowledge of the full robot morphology and kinematics models,
camera calibration matrices, and proprioception. We allow a maximum of 150 steps for Oracle VS
and MAVRIC, and servoing terminates early if the MRCP has reached within a 5 pixel radius of the
goal (in 640x480 views).

Tab 1 reports (i) the median 3D distance error of the manually annotated end effector point from the
goal, and (ii) early termination rate (ETR). ROS MoveIt is not feasible for servoing unmodeled tools,
so we report its performance only in the no-tool setting. Its error is higher than Oracle VS; this may be
due to WidowX robot model inaccuracy, servo encoder position errors, and camera calibration error.
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Figure 2: [Best seen in pdf] (Top) End-effector region identification success rate (higher is better), and (Bottom)
End-effector identification error (in cm, lower is better) in various settings for the maximum-motion baseline, and
various ablations of our method. Note that max-motion performs very poorly in most situations (average error
8.8 cm): the error axis is clipped at 6 cm here. Among ablations of MAVRIC, we study three hyperparameters:
number of stages of end-effector ID (default: 2), noise variance (in squared pixel units) before responsiveness
computation (default: 1.6), number of top points averaged to compute the MRCP (default: 15).

no tool pencil pliers wrench amputated

Figure 3: [Best seen in pdf] MRCP identification in various settings. In each setting, the red point is the MRCP,
computed as the average of the 15 most responsive points, shown in green.

Oracle VS does well in most settings, and MAVRIC takes slightly longer (lower ETR), but its error is
within 3 cm of Oracle VS, which may largely be explained by the end-effector point identification
error (Fig 2).

Appendix G demonstrates embodiment mapping with MAVRIC for robot-to-robot imitation.

Discussion: We have presented MAVRIC, an approach that performs fast robot body recognition
and uses this to accomplish morphology-agnostic visuomotor control. Reinforcement learning-
based approaches operating in the same setting typically require days of robot data [19; 18; 17; 29],
compared to 20s for MAVRIC. However, MAVRIC currently has several important drawbacks: (i) it
inherits the common problems of visual servoing methods, namely local minima and singularites
during Jacobian estimation. [30; 31; 32; 33] and (ii) it is currently not robust to occlusions, since it
relies on unbroken visual tracks during both self-recognition and control. We are working to address
these.

Method no-tool wrench pliers pencil marker average
error ETR error ETR error ETR error ETR error ETR error ETR

ROS MoveIt 4.4 - - - - - - - - - - -
Oracle VS 1.2 1.0 2.3 0.9 2.2 1.0 2.2 0.3 3.6 0.8 2.3 0.8
mavric 4.4 0.3 3.5 0.7 5.7 0.9 6.8 0.6 5.9 0.6 5.2 0.6

Table 1: 3D point-reaching error (in cm) between the manually annotated “true end-effector point” and the
target (median over 9 goals), and early termination rate (ETR). MAVRIC, which automatically recognizes its own
end-effector and uses it to servo, performs comparably with methods that have access to more information.
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A On the Definition of Control Points and Robot Body

In Sec 2.1, we defined the “body” Bδ of a robot as the set of particles whose responsiveness is higher

than some threshold δ: Bδ , {Pi : Ri > δ}. We call the constituent particles of this set “control
points.”

Does this definition align with our intuitive notion of a robot’s body? Should all points on a robot’s
body be “responsive”, i.e., do their displacements ∆S have high MI with the control inputs A? For
this to hold, ∆S must be a probabilistic function of A, i.e., a fixed control input must induce a fixed
distribution over ∆S. This is true for velocity control commands as long as the states S explored
during the self-recognition phase lie within a small neighborhood. For example, consider a single
motor controlling a rigid rod, as in Fig 4 (left). A small angular shift ∆θ in the servomotor corresponds
to a displacement r∆θ for a particle at a distance r along the rod, in a direction perpendicular to the
current orientation of the rod. With a significantly different orientation of the rod, the same angular
shift would produce a very different displacement.

To account for this, our experiments employ velocity control and a small number of small explo-
ration actions, so that all exploration happens within a small state neighborhood. As we will show
empirically, this yields good performance.1

1An alternative definition of responsiveness may be much more general, but much less efficient to compute
in practice: Ri = I(Si(t), Si(t+ 1);A(t)) — state changes ∆Si are replaced throughout by state transition
pairs (Si(t), Si(t+ 1)), and the rest of the approach remains the same.
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Figure 4: Manual annotations to illustrate the end-effector point (green point) and region (red outline) in
different settings: a schematic single link robot (leftmost), followed by our experimental setups with various
tools held in a robot arm.

B Coarse to Fine Search for MRCP

In Sec 2.1, we alluded to a coarse-to-fine approach during self-recognition. This strategy targets the
MRCP, since we are primarily interested in it for control. It works as follows: In the coarse stage, we
initialize point tracking with Shi-Tomasi corner points [34], compute responsiveness scores and select
the top-k candidate particles. In the fine stage, we reinitialize tracking with a grid of 15x15 points
around each of the selected candidates, and recompute responsiveness scores. Our experiments in
Sec 3.1 evaluate the impact of various implementation details including coarse-to-fine search, noise
addition, and the value of k.

C Visual Servoing Details

In Sec 2.2, we briefly described how MAVRIC uses visual servoing for control. We provide a more
elaborate explanation here.

Once the MRCP is identified, MAVRIC performs visual servoing for control to transport the MRCP
point S∗ to a specified goal point G. This is appropriate for tasks like reaching and pushing, which
are normally performed by hand-specified end-effectors in standard control settings.

We use online regression to fit (A,∆S∗) tuples to estimate local Jacobian matrices “on the fly,” using

Broyden updates [11]: Ĵt = Ĵt−1 + (∆St − Jt−1At)A
T
t /‖At‖

2.

The new control input At for the current step is then computed using the pseudoinverse of the Jacobian,

as At = ηĴ†
t (G−S∗(t)), where η is a rate hyperparameter. Once At is executed and the new position

S∗ is measured, the Jacobian matrix is updated as above, and the process repeats until S∗ ≈ G. The
Broyden update above is susceptible to noise, since it only uses a single ∆St measurement, hence
we apply a batched update comprising the last T tuples of (Aτ , ∆Sτ ) as proposed in [12]. In our
experiments, we set T = 10.

The Jacobian matrix initialization J0 is computed as follows: we start at a random arm position,
sequentially set the control inputs Ai to scaled unit vectors ǫei along each control dimension, and
set the i-th column of J0 to the response ∆Si/ǫ. In our experiments, we repeat this initialization
procedure whenever servoing has failed to get closer to the target in the last 20 steps.

Handling tracking failures. The above discussion of visual servoing depends on reliably continuing
to track the MRCP throughout the servoing process. In practice, tracking is imperfect, and the control
points are often dropped midway through the task due to occlusions, lighting changes etc. For
robustness to such errors, we take the MRCP to be the average of the k = 15 most responsive control
points. If any one point is dropped by the tracker during servoing, the MRCP is set to the average of
the remaining points.

D Details of Comparisons and Ablations in Self-Recognition Experiments

In Sec 3.1 and specifically the experiments in Fig 2, we evaluate several design decisions in MAVRIC:
1-stage vs 2-stage (coarse-to-fine) MRCP search, values of K for top-K control point selection, and
values of noise variance added to point tracks before responsiveness computation. We explain these
now.
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Figure 5: [Best seen in pdf] (Left to right) Original image of the arm with a marker tool, followed by MRCP
identification with various values of noise variance. As noise increases, the MRCP points move closer towards
the marker tip.

(a) (b) (c) (d)

Figure 6: [Best seen in pdf] (a) Self-recognition performance with shorter exploration phases, (b) Self-
recognition with an amputated arm and a handheld camera, (c) Discovery of robot arm links from self-recognition
phase data: tracks assigned to different clusters are colored differently. (d) Precision-Recall plot for control
points.

While all MAVRIC variants work nearly perfectly on the end-effector region identification plots (Fig 2,
top), the end-effector point identification error plot (Fig 2, bottom) provides a clear comparison of the
MAVRIC ablations, labeled A through H in the legend. Comparing A and C (1-stage vs. 2-stage search),
it is clear that coarse-to-fine MRCP search has a big impact on self-recognition success. Comparing B,
C, D, E, and F (increasing noise variance), it is clear that a small amount of noise improves outcomes,
but performance deteriorates when the noise is too high. Finally, comparing G, H, and C (top 1 vs top
5 vs top 15 control points), top 15 performs best in most cases. For all remaining experiments, we use
variant E (2-stage, noise variance 1.6, and top 15 control point selection). Fig 3 shows examples of
the detected MRCP from various runs under various settings. Fig 5 shows examples of the effect of
noise on MRCP detection with the marker tool, clearly illustrating how higher noise variance biases
towards selecting points closer to the tip of the marker.

E Additional Evaluation Settings for Self-Recognition

We provide additional evidence of MAVRIC self-recognition working well, aside from the results in
Sec 3.1.

Amputated arm and shaky camera. We also quantitatively evaluate self-recognition in two
additional settings: an amputated version of the robot arm, with the last two links removed, and a
shaky handheld camera. Fig 6 shows the errors. Once again, 2-stage MAVRIC works best. Fig 1 shows
various steps during self-recognition with the handheld camera. Fig 3 includes an example in the
amputated arm setting.

Self-recognition phase duration. While the above results are based on a 100-time step self-
recognition phase (approx. 20 s), how much faster could this phase be? We evaluate end-effector
identification with even fewer exploration steps in Fig 6, which shows that performance deteriorates
gracefully under shorter exploration sequences.

Moving distractors. Next, we evaluate self-recognition with moving distractors by evaluating it
on videos with two robots, where one of the robots is controlled by our method, while the other
moves autonomously, thereby creating a moving distractor. We create such videos by spatially
concatenating two separate exploration videos. Fig 7 shows an example result. MAVRIC correctly
selects the end-effector of the correct arm, based on which arm’s control commands it receives as
input. See Supp for example videos. Max-motion does not have any control inputs, so it produces the
same prediction in both cases.
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video 1, left arm control inputs video 1, right arm control inputs

Figure 7: The moving distractors test: given the same video of two arms operating side by side (produced by
concatenating individual frames side-by-side from two exploration videos), MAVRIC correctly ignores the decoy
arm and selects the arm that is being controlled based on which control input sequence it receives as input. (left)
MAVRIC is fed the left arm’s controls, and it selects the MRCP (red point) on the left arm’s end effector. (right)
With right arm’s control inputs, MAVRIC selects the right arm’s end effector.

Evaluating control points. While the above results evaluate end-effector identification alone,
MAVRIC finds control points all along the robot body. We now annotate the full robot body to evaluate
whether these discovered control points are indeed on the robot body. Treating points on the robot
body as ground truth positives, and those outside as negatives, Fig 6 (d) shows the precision-recall
plot as the threshold δ on the responsiveness scores are varied (“MAVRIC w/o outlier removal”):
while the precision is very high at low recall, it drops off quickly. This is intuitive: the lower the
true responsiveness, the more noisy the measurements are. We expect that less responsive control
points would benefit from a longer self-recognition phase. However, even with 20 seconds, it is
possible to filter the points to improve the precision-recall performance. We perform simple outlier
removal as follows: we measure the 2D position variance of each candidate track over the length of
self-recognition, and set a heuristic threshold on this value, below which points are discarded. This
simple outlier removal scheme proves sufficient to significantly improve precision-recall, as shown in
Fig 6 (d). These control points may then be clustered based on spatial coherence to discover various
links of a rigid robot, and their associated responsiveness scores. Fig 6 (c) shows an example. We use
K-means clustering (K = 10) on position history features.

F Validating Tracking Approach

We now compare MAVRIC’s tracking approach against an alternative tracking scheme. [7] track
moving objects for self-recognition by finding image patches that match the expected appearance
of the robot and clustering them based on appearance. We implement their tracking scheme for
self-recognition, so that the output is an image patch tracked through the video, representing the
end-effector. On the same “no-tool” videos where MAVRIC correctly identifies the end-effector 10 out
of 10 times, this method produces an output image patch that is centered on the end-effector only 2
out of 10 times. Further, since this clustering scheme relies on appearance similarities, it completely
breaks down in the moving distractors setting above, where multiple identical-looking robots are
present — the same appearance cluster teleports across the different robots, making responsiveness
computation extremely noisy.

G Robot-to-Robot Imitation

Next, we perform robot-to-robot imitation through MAVRIC: the target robot servos to move its
MRCP along the source robot’s MRCP trajectory. Fig 8 (left) shows the source robot drawing the
letter “C” with a chalk piece (cyan represents the next target, white points are future target points,
and black points are previously achieved target points). Fig 8 (right) shows the target robot, a second
WidowX in different pose and illumination, in the process of following the trajectory of the source
robot, including its path before the “C”. See Supp for videos. MAVRIC thus enables visual embodiment
mapping between two robots with unknown morphologies.
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Figure 8: [Best seen in pdf] Robot-to-robot imitation with MAVRIC. In both video frames, cyan represents the
next target, white points are future target points, and black points are previously reached target points. (left) A
video frame of a source robot draws the letter C — in this case, we used MAVRIC to perform this task with visual
servoing for trajectory-following. (right) A video frame of the target robot imitating the motions of the source
robot. Full video in Supp.
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