
Model-Augmented Actor-Critic:
Backpropagating through Paths

Ignasi Clavera∗
University of California, Berkeley

iclavera@berkeley.edu

Yao Fu∗
University of California, Berkeley
violetfuyao@berkeley.edu

Pieter Abbeel
University of California, Berkeley
pabbeel@cs.berkeley.edu

Abstract

Current model-based reinforcement learning approaches use the model simply as a
learned black-box simulator to augment the data for policy optimization or value
function learning. In this paper, we show how to make more effective use of the
model by exploiting its differentiability. We construct a policy optimization algo-
rithm that uses the pathwise derivative of the learned model and policy across future
timesteps. Instabilities of learning across many timesteps are prevented by using a
terminal value function, learning the policy in an actor-critic fashion. Furthermore,
we present a derivation on the monotonic improvement of our objective in terms
of the gradient error in the model and value function. We show that our approach
(i) is consistently more sample efficient than existing state-of-the-art model-based
algorithms, (ii) matches the asymptotic performance of model-free algorithms, and
(iii) scales to long horizons, a regime where typically past model-based approaches
have struggled.

1 Introduction

Model-based reinforcement learning (RL) offers the potential to be a general-purpose tool for learning
complex policies while being sample efficient. When learning in real-world physical systems, data
collection can be an arduous process. Contrary to model-free methods, model-based approaches are
appealing due to their comparatively fast learning. By first learning the dynamics of the system in a
supervised learning way, it can exploit off-policy data. Then, model-based methods use the model to
derive controllers from it, either parametric [14, 1, 9] or non-parametric [17, 2].

Current model-based methods learn with an order of magnitude less data than their model-free
counterparts while achieving the same asymptotic convergence. Tools like ensembles, probabilistic
models, and meta-learning have been used to achieved such performance [11, 2, 3]. However, the
model usage in all of these methods is the same: simple data augmentation. They use the learned
model as a black-box simulator generating samples from it. In high-dimensional environments or
environments that require longer planning, substantial sampling is needed to provide meaningful
signal for the policy. Can we further exploit our learned models?

In this work, we propose to estimate the policy gradient by backpropagating its gradient through the
model using the pathwise derivative estimator. Since the learned model is differentiable, one can
link together the model, reward function, and policy to obtain an analytic expression for the gradient

∗Equal contribution

NeurIPS 2019 Workshop on Robot Learning: Control and Interaction in the Real World, Vancouver, Canada

of the returns with respect to the policy. By computing the gradient in this manner, we obtain an
expressive signal that allows rapid policy learning. We avoid the instabilities that often result from
back-propagating through long horizons by using a terminal Q-function. This scheme fully exploits
the learned model without harming the learning stability in previous approaches [11, 8]. The horizon
at which we apply the terminal Q-function acts as a hyperparameter between model-free (when fully
relying on the Q-function) and model-based (when using a longer horizon) of our algorithm.

The main contribution of this work is a model-based method that significantly reduces the sample
complexity compared to state-of-the-art model-based algorithms [9, 1]. For instance, we achieve a
10k return in half-cheetah environment in just 50 trajectories. We theoretically justify our optimization
objective and derive the monotonic improvement of our learned policy in terms of the Q-function
and the model error. The theoretical results are experimentally analyzed. Finally, we pinpoint the
importance of our objective by ablating each component of our algorithm. The results are reported
in four model-based benchmarking environments [22, 21]. The low sample complexity and high
performance of our method carry high promise towards learning directly on real robots.

2 Reinforcement Learning

A discrete-time finite Markov decision process (MDP)M is defined by the tuple (S,A, f, r, γ, p0, T).
Here, S is the set of states, A the action space, st+1 ∼ f(st, at) the transition distribution, r :
S ×A → R is a reward function, p0 : S → R+ represents the initial state distribution, γ the discount
factor, and T is the horizon of the process. We define the return as the sum of rewards r(st, at) along
a trajectory τ := (s0, a0, ..., sT−1, aT−1, sT). The goal of reinforcement learning is to find a policy
πθ : S ×A → R+ that maximizes the expected return, i.e., maxθ J(θ) = maxθ E[

∑
t γ

tr(st, at)].

Actor-Critic. In actor-critic methods, the policy (actor), is updated with the gradient of theQ-function
(critic) w.r.t the action, and the Q-function is update to minimize the Bellman error:

∇θJπ(θ) = E
[
∇aQπψ(s, a)∇θπθ(s)

]
JQ(ψ) = E[(Qπψ(s, a)− (r(s, a) + γQπψ(s

′, a′)))2]

The key benefit of this update is that it can be applied in an off-policy fashion, sampling random
mini-batches of transitions from an experience replay buffer [13].

Model-Based RL. Model-based methods, contrary to model-free RL, which does not explicitly
model state transitions, they learn the transition distribution, also known as dynamics model, from
the experience. This can be done with a parametric function approximator p̂φ(s′|s,a). In such case,
the parameters φ of the dynamics model are optimized by maximum likelihood.

3 Algorithm

We develop a new algorithm that explicitly optimizes the model-augmented actor-critic (MAAC)
objective. The overall algorithm is divided into three main steps: model learning, policy optimization,
and Q-function learning. The theoretical guarantees of our method are provided in the Appendix.

Model learning. In order to prevent overfitting and overcome model-bias [4], we use a bootstrap
ensemble of dynamics models {f̂φ1

, ..., f̂φM
}. Each of the dynamics models parameterizes the

mean and the covariance of a Gaussian distribution with diagonal covariance. The bootstrap en-
semble captures the epistemic uncertainty, uncertainty due to the limited capacity or data, while
the probabilistic models are able to capture the aleatoric uncertainty [2], inherent uncertainty of the
environment. We denote by fφ the transitions dynamics resulting from φU , where U ∼ U [M] is
uniform random variable. The dynamics models are trained via maximum likelihood with early
stopping on a validation set.

Policy Optimization. We extend the MAAC objective with an entropy bonus [7], and perform
policy learning by maximizing

Jπ(θ) = E

[
H−1∑
t=0

γtr(ŝt) + γHQψ(ŝH , aH)

]
+ βH(πθ)

where ŝt+1 ∼ fφ(ŝt, at), ŝ0 ∼ D, a ∼ πθ. We learn the policy by using the pathwise derivative of
the model through H steps and the Q-function by sampling multiple trajectories from the same ŝ0.

2

Hence, we learn a maximum entropy policy using pathwise derivative of the model through H steps
and the Q-function. We compute the expectation by sampling multiple actions and states from the
policy and learned dynamics, respectively.

Q-function Learning. In practice, we train two Q-functions [5] since it has been experimentally
proven to yield better results. We train both Q functions by minimizing the Bellman error (Section 2):

JQ(ψ) = E[(Qψ(st, at)− (r(st, at) + γQψ(st+1, at+1)))
2]

Similar to [9], we minimize the Bellman residual on states previously visited and imagined states
obtained from unrolling the learned model. Finally, the value targets are obtained in the same fashion
as the Stochastic Ensemble Value Expansion [1], using H as a horizon for the expansion.

Our method, MAAC, iterates between collecting samples , model training, policy optimization, and
Q-function learning. First, we obtain trajectories from the real environment using the latest policy
available and append them to a replay buffer Denv, on which the dynamics models are trained until
convergence. Then we collect imaginary data from the models: we collect k-step transitions by
unrolling the latest policy from a randomly sampled state on Denv . The imaginary data constitutes
the Dmodel, which together with the replay buffer, is used to learn the Q-function and train the policy.

4 Results

Our experimental evaluation aims to examine the following questions: 1) How does MAAC compares
against state-of-the-art model-based and model-free methods? 2) Does the gradient error correlate
with the derived bound?, 3) Which are the key components of its performance?, and 4) Does it benefit
from planning at test time?

In order to answer the posed questions, we evaluate our approach on model-based continuous control
benchmark tasks in the MuJoCo simulator [21, 22].

Figure 1: Comparison against state-of-the-art model-free and model-based baselines in four different MuJoCo
environments. Our method, MAAC, attains better sample efficiency and asymptotic performance than previous
approaches. The gap in performance between MAAC and previous work increases as the environments increase
in complexity.

4.1 Comparison Against State-of-the-Art

We compare our method on sample complexity and asymptotic performance against state-of-the-art
model-free (MF) and model-based (MB) baselines. Specifically, we compare against the model-
free soft actor-critic (SAC) [6] as well as two state-of-the-art model-based baselines: model-based
policy-optimization (MBPO) [9] and stochastic ensemble value expansion (STEVE) [1]. The original
STEVE algorithm builds on top of the model-free algorithm DDPG [12], however, we implemented
it on top of SAC. We also add SVG(1) [8] to comparison, which similar to our method uses the
derivative of dynamic models to learn the policy.

The results, shown in Fig. 1, highlight the strength of MAAC in terms of performance and sample
complexity. MAAC scales to higher dimensional tasks while maintaining its sample efficiency and
asymptotic performance. In all the four environments, our method learns faster than previous MB
and MF methods. We are able to learn near-optimal policies in the half-cheetah environment in
just over 50 rollouts, while previous model-based methods need at least the double amount of data.
Furthermore, in complex environments, such as ant, MAAC achieves near-optimal performance
within 150 rollouts while other take orders of magnitudes more data.

3

4.2 Gradient Error

Figure 2: L1 error on the policy gradi-
ent when using the proposed objective
for different values of the horizon H
as well as the error from the true dy-
namics. The results correlate with the
assumption that the error in the learned
dynamics is lower than the error in the
Q-function, as well as they correlate
with the derived bounds.

Here, we investigate how the bounds obtained relate to the
empirical performance. In particular, we study the effect of the
horizon of the model predictions on the gradient error. In order
to do so, we construct a double integrator environment; since
the transitions are linear and the cost is quadratic for a linear
policy, we can obtain the analytic gradient of the expect return.

Figure 2 depicts the L1 error of the MAAC objective for differ-
ent values of the horizon H as well as what would be the error
using the true dynamics. As expected, using the true dynam-
ics yields to lower gradient error since the only source comes
from the learned Q-function that is weighted down by γH . The
results using learned dynamics show that the error from the
learned dynamics is lower than the one in the Q-function, but
it scales poorly with the horizon. For short horizons the error
decreases as we increase the horizon. However, large horizons
is detrimental since it magnifies the error on the models.

4.3 Ablations

In order to investigate the importance of each of the compo-
nents of our overall algorithm, we carry out an ablation test.
Specifically, we test three different components: 1) not using
the model to train the policy, i.e., set H = 0, 2) not using the
STEVE targets for training the critic, and 3) using a single
sample estimate of the path-wise derivative.

The ablation test is shown in Figure 3. The test underpins the importance of backpropagating through
the model: setting H to be 0 inflicts a severe drop in the algorithm performance. On the other hand,
using the STEVE targets results in slightly more stable training, but it does not have a significant
effect. Finally, while single sample estimates can be used in simple environments, they are not
accurate enough in higher dimensional environments such as ant.

Figure 3: Ablation test of our method. We test the importance of several components of our method: not using
the model to train the policy (H = 0), not using the STEVE targets for training the Q-function (-STEVE), and
using a single sample estimate of the pathwise derivative. Using the model is the component that affects the
most the performance, highlighting the importance of our derived estimator.

5 Conclusion

In this work, we present model-augmented actor-critic, MAAC, a reinforcement learning algorithm
that uses a learned model by using the pathwise derivative across future timesteps. We theoretically
analyzed the objective in terms of the model and value error and we derive a policy improvement
expression with respect to those terms. Our algorithm can achieve superior performance and sample
efficiency than state-of-the-art model-based and model-free reinforcement learning algorithms. For
future work, it would be enticing to deploy the presented algorithm on a real-robotic agent.

4

References
[1] Jacob Buckman, Danijar Hafner, George Tucker, Eugene Brevdo, and Honglak Lee. Sample-efficient

reinforcement learning with stochastic ensemble value expansion. CoRR, abs/1807.01675, 2018.

[2] Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey Levine. Deep reinforcement learning in
a handful of trials using probabilistic dynamics models. arXiv preprint arXiv:1805.12114, 2018.

[3] Ignasi Clavera, Jonas Rothfuss, John Schulman, Yasuhiro Fujita, Tamim Asfour, and Pieter Abbeel.
Model-based reinforcement learning via meta-policy optimization. CoRR, abs/1809.05214, 2018.

[4] Marc Deisenroth and Carl E Rasmussen. Pilco: A model-based and data-efficient approach to policy search.
In Proceedings of the 28th International Conference on machine learning (ICML-11), pages 465–472,
2011.

[5] Scott Fujimoto, Herke van Hoof, and David Meger. Addressing function approximation error in actor-critic
methods. arXiv preprint arXiv:1802.09477, 2018.

[6] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy maximum
entropy deep reinforcement learning with a stochastic actor. arXiv preprint arXiv:1801.01290, 2018.

[7] Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash
Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, and Sergey Levine. Soft actor-critic algorithms and
applications. CoRR, abs/1812.05905, 2018.

[8] Nicolas Heess, Gregory Wayne, David Silver, Timothy Lillicrap, Tom Erez, and Yuval Tassa. Learning
continuous control policies by stochastic value gradients. In Advances in Neural Information Processing
Systems, pages 2944–2952, 2015.

[9] Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When to trust your model: Model-based
policy optimization. CoRR, abs/1906.08253, 2019.

[10] Sham Kakade and John Langford. Approximately optimal approximate reinforcement learning. In IN
PROC. 19TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING, pages 267–274, 2002.

[11] Thanard Kurutach, Ignasi Clavera, Yan Duan, Aviv Tamar, and Pieter Abbeel. Model-ensemble trust-region
policy optimization. arXiv preprint arXiv:1802.10592, 2018.

[12] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa, David
Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv preprint
arXiv:1509.02971, 2015.

[13] Long-Ji Lin. Self-improving reactive agents based on reinforcement learning, planning and teaching.
Machine Learning, 8(3):293–321, May 1992.

[14] Yuping Luo, Huazhe Xu, Yuanzhi Li, Yuandong Tian, Trevor Darrell, and Tengyu Ma. Algorithmic
framework for model-based deep reinforcement learning with theoretical guarantees. ICLR, 2019.

[15] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim Harley,
David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement learning. In
International Conference on Machine Learning, pages 1928–1937, 2016.

[16] Shakir Mohamed, Mihaela Rosca, Michael Figurnov, and Andriy Mnih. Monte carlo gradient estimation
in machine learning, 2019.

[17] Anusha Nagabandi, Gregory Kahn, Ronald S Fearing, and Sergey Levine. Neural network dynamics for
model-based deep reinforcement learning with model-free fine-tuning. arXiv preprint arXiv:1708.02596,
2017.

[18] J. Peters and S. Schaal. Policy gradient methods for robotics. In 2006 IEEE/RSJ International Conference
on Intelligent Robots and Systems, pages 2219–2225, Oct 2006.

[19] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region policy
optimization. In Proceedings of the 32nd International Conference on Machine Learning (ICML-15),
pages 1889–1897, 2015.

[20] Richard S. Sutton and Andrew G. Barto. Introduction to Reinforcement Learning. MIT Press, Cambridge,
MA, USA, 1st edition, 1998.

5

[21] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control. In
Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International Conference on, pages 5026–5033.
IEEE, 2012.

[22] Tingwu Wang, Xuchan Bao, Ignasi Clavera, Jerrick Hoang, Yeming Wen, Eric Langlois, Shunshi Zhang,
Guodong Zhang, Pieter Abbeel, and Jimmy Ba. Benchmarking model-based reinforcement learning. CoRR,
abs/1907.02057, 2019.

6

A Appendix

In this section, we provide the theoretical proofs of our methods as well as some additional experi-
ments.

A.1 Model-Augmented Actor-Critic Objective

Among model-free methods, actor-critic methods have shown superior performance in terms of
sample efficiency and asymptotic performance [6]. However, their sample efficiency remains worse
than model-based approaches, and fully off-policy methods still show instabilities comparing to
on-policy algorithms [15]. In this paper, we propose a modification of the Q-function parametrization
by using the model predictions on the first time-steps after the action is taken. Specifically, we do
policy optimization by maximizing the following objective:

Jπ(θ) = E

[
H−1∑
t=0

γtr(st) + γHQ̂(sH , aH)

]

whereby, st+1 ∼ f̂(st, at) and at ∼ πθ(st). Note that under the true dynamics and Q-function, this
objective is the same as the RL objective. Contrary to previous reinforcement learning methods,
we optimize this objective by back-propagation through time. Since the learned dynamics model
and policy are parameterized as Gaussian distributions, we can make use of the pathwise derivative
estimator to compute the gradient, resulting in an objective that captures uncertainty while presenting
low variance. The computational graph of the proposed objective is shown in Figure 4.

 θ

a1 a2

s2

J

sH

aH

s0

r0 r1 r2 rH Q

a0

s1 ...

Figure 4: Stochastic computation graph of the proposed
objective Jπ . The stochastic nodes are represented by
circles and the deterministic ones by squares.

While the proposed objective resembles n-step
bootstrap [20], our model usage fundamentally
differs from previous approaches. First, we do
not compromise between being off-policy and
stability. Typically, n-step bootstrap is either
on-policy, which harms the sample complexity,
or its gradient estimation uses likelihood ratios,
which presents large variance and results in un-
stable learning [8]. Second, we obtain a strong
learning signal by backpropagating the gradi-
ent of the policy across multiple steps using the
pathwise derivative estimator, instead of the RE-
INFORCE estimator [16, 18]. And finally, we
prevent the exploding and vanishing gradients
effect inherent to back-propagation through time
by the means of the terminal Q-function [11].

The horizon H in our proposed objective allows us to trade off between the accuracy of our learned
model and the accuracy of our learned Q-function. Hence, it controls the degree to which our
algorithm is model-based or well model-free. If we were not to trust our model at all (H = 0), we
would end up with a model-free update; for H = ∞, the objective results in a shooting objective.
Note that we will perform policy optimization by taking derivatives of the objective, hence we require
accuracy on the derivatives of the objective and not on its value. The following lemma provides a
bound on the gradient error in terms of the error on the derivatives of the model, the Q-function, and
the horizon H .

Lemma A.1 (Gradient Error). Let f̂ and Q̂ be the learned approximation of the dynamics f and
Q-functionQ, respectively. Assume thatQ and Q̂ have Lq/2-Lipschitz continuous gradient and f and
f̂ have Lf/2-Lipschitz continuous gradient. Let εf = maxt ‖∇f̂(ŝt, ât)−∇f(st, at)‖2 be the error
on the model derivatives and εQ = ‖∇Q̂(ŝH , âH) − ∇Q(sH , aH)‖2 the error on the Q-function
derivative. Then the error on the gradient between the learned objective and the true objective can
be bounded by:

E
[
‖∇θJπ −∇θĴπ‖2

]
≤ c1(H)εf + c2(H)εQ

7

Proof. Let Jπ(θ) and Ĵπ(θ̂) be the expected return of the policy πθ under our objective and under
the RL objective, respectively. Then, we can write the MSE of the gradient as

E[‖∇θJπ(θ)−∇θĴπ(θ)‖2] = E[‖∇θ(M − M̂) + |∇θγH(Q− Q̂)‖2]
≤ E[‖∇θ(M − M̂)‖2] + E[‖∇θγH(Q− Q̂)‖2]

whereby, M =
∑H
t=0 γ

tr(st) and M̂ =
∑H
t=0 γ

tr(ŝt).

We will denote as∇ the gradient w.r.t the inputs of network, xt = (st, at) and x̂t = (ŝt, ât); where
ât ∼ πθ(ŝt). Notice that since ff̂ and π are Lipschitz and their gradient is Lipschitz as well, we have
that ∇θx̂t ≤ Kt, where K depends on the Lipschitz constants of the model and the policy. Without
loss of generality, we assume that K is larger than 1. Now, we can bound the error on the Q as

‖∇θ(Q− Q̂)‖2 =‖∇Q∇θxH −∇Q̂∇θx̂H‖2
= ‖(∇Q−∇Q̂)∇θxH −∇Q̂(∇θx̂H −∇θxH)‖2
≤ ‖∇Q−∇Q̂‖2‖∇θxH‖2 + ‖∇Q̂‖2‖∇θx̂H −∇θxH‖2
≤ εQ‖∇θxH‖2 + LQ‖∇θx̂H −∇θxH‖2
≤ εQKH + LQ‖∇θx̂H −∇θxH‖2

Now, we will bound the term ‖∇θ ŝt+1 −∇θst+1‖2:

‖∇θ ŝt+1 −∇θst+1‖2 = ‖∇sf̂∇θ ŝt +∇af̂∇θât −∇sf∇θst −∇af∇θat‖2
≤ ‖∇sf̂∇θ ŝt −∇sf∇θst‖2 + ‖∇af̂∇θât −∇af∇θat‖2
≤ εf‖∇θ ŝt‖2 + Lf‖∇θ ŝt −∇θst‖2 + Lf‖∇θât −∇θat‖+ εf‖∇θât‖2
≤ εf‖∇θ ŝt‖2 + (Lf + LfLπ)‖∇θ ŝt −∇θst‖2 + εf‖∇θât
= εf‖∇θx̂t‖2 + (Lf + LfLπ)‖∇θ ŝt −∇θst‖2

Hence, applying this recursion we obtain that

‖∇θx̂t+1 −∇θxt+1‖2 ≤ εf
t∑

k=0

(Lf + LfLπ)
t−k‖∇θx̂k‖2 ≤ εf

Lt+1 − 1

L− 1
Kt

where L = Lf + LfLπ . Then, the error in the gradient in the previous term is bounded by

‖∇θ(Q− Q̂)‖2 ≤ εQKH + LQεf
LH − 1

L− 1
KH

In order to bound the model term we need first to bound the rewards since

‖∇θ(M − M̂)‖2 ≤
H∑
t=0

γt‖∇θ(r(st)− r(ŝt))‖2

Similar to the previous bounds, we can bound now each reward term by

‖∇θ(r(st)− r(ŝt))‖2 ≤ εfLr
Lt+1 − 1

L− 1
Kt

With this result we can bound the total error in models

‖∇θ(M − M̂)‖2 ≤
H−1∑
t=0

γtεfLr
Lt+1 − 1

L− 1
Kt =

Lεf
(L− 1)

(
(γKL)H − 1

γKL− 1
− (γK)H − 1

γK − 1

)
Then, the gradient error has the form

E[‖∇θJπ(θ)−∇θĴπ(θ)‖2] ≤
Lεf

(L− 1)

(
(γKL)H − 1

γKL− 1
− (γK)H − 1

γK − 1

)
+ εQ(γK)H + LQεf

LH − 1

L− 1
(γK)H

= εfc1(H) + εQc2(H)

8

The result in Lemma A.1 stipulates the error of the policy gradient in terms of the maximum error in
the model derivatives and the error in the Q derivatives. The functions c1 and c2 are functions of the
horizon and depend on the Lipschitz constants of the model and the Q-function. Note that we are just
interested in the relation between both sources of error, since the gradient magnitude will be scaled
by the learning rate, or by the optimizer, when applying it to the weights.

A.2 Monotonic Improvement

In the previous section, we presented our objective and the error it incurs in the policy gradient with
respect to approximation error in the model and the Q function. However, the error on the gradient
is not indicative of the effect of the desired metric: the average return. Here, we quantify the effect
of the modeling error on the return. First, we will bound the KL-divergence between the policies
resulting from taking the gradient with the true objective and the approximated one. Then we will
bound the performance in terms of the KL.

Lemma A.2 (Total Variation Bound). Under the assumptions of the Lemma A.1, let θ = θo+α∇θJπ
be the parameters resulting from taking a gradient step on the exact objective, and θ̂ = θo + α∇θĴπ
the parameters resulting from taking a gradient step on approximated objective, where α ∈ R+. Then
the following bound on the total variation distance holds

max
s
DTV(πθ||πθ̂) ≤ αc3(εfc1(H) + εQc2(H))

Proof. The total variation distance can be bounded by the KL-divergence using the Pinsker’s inequal-
ity

DTV (πθ‖πθ̂) ≤
√
DKL(πθ‖πθ̂)

2

Then if we assume third order smoothness on our policy, by the Fisher information metric theorem
then

DKL(πθ‖πθ̂) = c̃‖θ − θ̂‖22 + (‖θ − θ̂‖32)

Given that ‖θ − θ̂‖2 = α‖∇θJπ −∇θĴπ‖2, for a small enough step the following inequality holds

DKL(πθ‖πθ̂) ≤ α
2c̃(εfc1(H) + εQc2(H))2 =

Combining this bound with the Pinsker inequality

DTV (πθ‖πθ̂) ≤ α
√
c̃

2
(εfc1(H) + εQc2(H)) = αc3(εfc1(H) + εQc2(H))

The previous lemma results in a bound on the distance between the policies originated from taking a
gradient step using the true dynamics and Q-function, and using its learned counterparts. Now, we
can derive a similar result from [10] to bound the difference in average returns.

Theorem A.1 (Monotonic Improvement). Under the assumptions of the Lemma A.1, be θ′ and θ̂ as
defined in Lemma A.2, and assuming that the reward is bounded by rmax. Then the average return of
the πθ̂ satisfies

Jπ(θ̂) ≥ Jπ(θ)−
2αrmax

1− γ
αc3(εfc1(H) + εQc2(H))

Proof. Given the bound on the total variation distance, we can now make use of the monotonic
improvement theorem to establish an improvement bound in terms of the gradient error. Let Jπ(θ)
and Jπ(θ̂) be the expected return of the policy πθ and πθ̂ under the true dynamics. Let ρ and ρ̂ be

9

the discounted state marginal for the policy πθ and πθ̂, respectively

|Jπ(θ)− Jπ(θ̂)| =|
∑
s,a

ρ(s)πθr(s, a)− ρ̂(s)πθ̂r(s, a)|

≤ |
∑
s,a

ρ(s)πθ(a|s)r(s, a)− ρ̂(s)πθ̂(a|s)r(s, a)|

≤ rmax|
∑
s,a

ρ(s)πθ(a|s)− ρ̂(s)πθ̂(a|s)|

≤ 2rmax

1− γ
max
s

∑
a

|πθ(a|s)− πθ̂(a|s)|

=
2rmax

1− γ
max
s
DTV (πθ‖πθ̂)

Then, combining the results from Lemma A.2 we obtain the desired bound.

Hence, we can provide explicit lower bounds of improvement in terms of model error and function
error. Theorem A.1 extends previous work of monotonic improvement for model-free policies [19, 10],
to the model-based and actor critic set up by taking the error on the learned functions into account.
From this bound one could, in principle, derive the optimal horizon H that minimizes the gradient
error. However, in practice, approximation errors are hard to determine and we treat H as an extra
hyper-parameter. In section 4.2, we experimentally analyze the error on the gradient for different
estimators and values of H .

A.3 Ablations

In order to show the significance of each component of MAAC, we conducted more ablation studies.
The results are shown in Figure 5. Here, we analyze the effect of training the Q-function with data
coming from just the real environment, not learning a maximum entropy policy, and increasing the
batch size instead of increasing the amount of samples to estimate the value function.

Figure 5: We further test the significance of some components of our method: not use the dynamics to generate
data, and only use real data sampled from environments to train policy and Q-functions (real_data), remove
entropy from optimization objects (no_entropy), and using a single sample estimate of the pathwise derivative
but increase the batch size accordingly (5x batch size). Considering entropy and using dynamic models to
augment data set are both very important.

A.4 Execution Time Comparison

A.5 Model Predictive Control

One of the key benefits of methods that combine model-based reinforcement learning and actor-critic
methods is that the optimization procedure results in a stochastic policy, a dynamics model and a
Q-function. Hence, we have all the components for, at test time, refine the action selection by the
means of model predictive control (MPC). Here, we investigate the improvement in performance of
planning at test time. Specifically, we use the cross-entropy method with our stochastic policy as
our initial distributions. The results, shown in Table 2, show benefits in online planning in complex

10

Iteration (s) Training Model (s) Optimization (s) MBPO Iteration (s)

HalfCheetahEnv 1312 486 738 708
HopperEnv 845 209 517 723

Table 1: This table shows the time that different parts of MAAC need to train for one iteration after
6000 time steps, averaged across 4 seeds. We also add the time needed for MBPO for one iteration
here for comparison.

AntEnv HalfCheetahEnv HopperEnv Walker2dEnv

MAAC+MPC 3.97e3± 1.48e3 1.09e4± 94.5 2.8e3± 11 1.76e3± 78
MAAC 3.06e3± 1.45e3 1.07e4± 253 2.77e3± 3.31 1.61e3± 404

Table 2: Performance at test time with (maac+mpc) and without (maac) planning of the converged
policy using the MAAC objective.

domains; however, its improvement gains are more timid in easier domains, showing that the learned
policy has already interiorized the optimal behaviour.

11

	Introduction
	Reinforcement Learning
	Algorithm
	Results
	Comparison Against State-of-the-Art
	Gradient Error
	Ablations

	Conclusion
	Appendix
	Model-Augmented Actor-Critic Objective
	Monotonic Improvement
	Ablations
	Execution Time Comparison
	Model Predictive Control

