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1 Introduction

Developing robotic systems that can complete long horizon visual manipulation tasks, while general-
izing to novel scenes and objectives, remains an unsolved and challenging problem. Generalization
to unseen objects and scenes requires robots to be trained across diverse environments, meaning that
detailed supervision during data collection in not practical to provide. Furthermore, reasoning over
long-horizon tasks introduces two additional major challenges. First, the robot must handle large
amounts of uncertainty as the horizon increases. And second, the robot must identify how to reach
distant goals when only provided with the final goal state, a sparse indication of the task, as opposed
to a shaped cost that implicitly encodes how to get there. In this work, we aim to develop a method
that can address these challenges, leveraging self-supervised models learned using only unlabeled
data, to solve novel temporally-extended tasks.

The key insight that we leverage is that while model error and sparse cost signals can make long
horizon planning difficult, we can mitigate these issues by learning to break down long-horizon
tasks into short horizon segments. Consider, for example, the long horizon task of opening a drawer
and putting a book in it, given supervision only in the form of the final image of the open drawer
containing the book. The goal image provides nearly no useful cost signal until the last stage of
the task, and model predictions are likely to become inaccurate beyond the first stage of the task.
However, if we can generate good subgoals, such as (1) the robot arm grasping the drawer handle, (2)
the open drawer, and (3) the robot arm reaching for the book, planning from the initial state to (1),
from (1) to (2), from (2) to (3), and from (3) to the goal, the problem becomes substantially easier.

Our main contribution is a self-supervised hierarchical planning framework, hierarchical visual
foresight (HVF), which combines generative models of images and model predictive control to
decompose a long-horizon visual task into a sequence of subgoals. In particular, we propose
optimizing over subgoals such that the resulting task subsegments have low expected planning
cost. However, in the case of visual planning, optimizing over subgoals corresponds to optimizing
within the space of natural images. To address this challenge, we train a generative latent variable
model over images from the robot’s environment and optimize over subgoals in the latent space
of this model. This allows us to optimize over the manifold of images with only a small number
of optimization variables. When combined with visual model predictive control, we observe that
this subgoal optimization naturally identifies semantically meaningful states in a long horizon tasks
as subgoals, and that when using these subgoals during planning, we achieve significantly higher
success rates on long horizon, multi-stage visual tasks. Furthermore, since our method outputs
subgoals conditioned on a goal image, we can use the same model and approach to plan to solve many
different long horizon tasks, even with previously unseen objects. We first demonstrate our approach
in simulation on a continuous control navigation task with tight bottlenecks, and then evaluate on a
set of four different multi-stage object manipulation tasks in a simulated desk environment, which
require interacting with up to 3 different objects. In the challenging desk environment, we find that
our method yields nearly a 200% performance improvement over prior approaches. Finally, we show
that our approach generates realistic subgoals on real robot manipulation data.
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2 Related Work
Developing robots that can execute complex behaviours from only pixel inputs has been a well studied
problem, for example with visual servoing [1, 2, 3, 4, 5, 6, 7, 8]. Recently, reinforcement learning has
shown promise in completing complex tasks from pixels [9, 10, 11, 12, 13, 14, 15, 16, 17]. While
model-free RL approaches have illustrated the ability to generalize to new objects [11] and learn
tasks such as grasping and pushing through self-supervision [18, 19], pure model-free approaches
generally lack the ability to explicitly reason over temporally-extended plans, making them ill-suited
for the problem of learning long-horizon tasks with limited supervision.

Within the space of goal-conditioned policy learning [20, 21, 22, 7, 8, 23], video prediction and
planning have also shown promise in enabling robots to complete a diverse set of visuomotor
tasks while generalizing to novel objects [24, 25, 26, 27]. Since then a number of video prediction
frameworks have been developed specifically for robotics [28, 29, 30], which combined with planning
have been used to complete diverse behaviors [31, 32, 33, 34]. However, these approaches still
struggle with long horizon tasks, which we specifically focus on.

One approach to handle long horizon tasks is to add compositional structure to policies, either from
demonstrations [35, 36], with manually-specified primitives [37, 38], learned temporal abstractions
[39], or through model-free reinforcement learning [40, 41, 42, 43, 44]. These works have studied
such hierarchy in grid worlds [42] and simulated control tasks [43, 45, 44] with known reward
functions. In contrast, we study how to incorporate compositional structure in learned model-based
planning with video prediction models. Our approach is entirely self-supervised, without motion
primitives, demonstrations, or shaped rewards, and scales to vision-based manipulation tasks. Like
our work, a number of recent works have explored reaching novel goals using only self-supervision
[24, 46, 47, 48, 49, 23]. While [46] presents hierarchical planning in the domain of visual navigation,
we focus on the problem of tabletop manipulation. Time-agnostic prediction (TAP) [49] aims to
identify bottlenecks in long-horizon visual manipulation tasks, while [23, 24] reach novel goals using
only self-supervision. We compare to all three of these methods in Section 4 and find that HVF
significantly outperforms all of them.

3 Hierarchical Visual Foresight
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Figure 1: Hierarchical visual foresight: Our method takes as
input the current image, goal image, an action conditioned video
prediction model fθ , and a generative model gφ(z). Then, it sam-
ples sets of possible states from gφ(z) as sub-goals. It then plans
between each sub-goal, and iteratively optimizes the sub-goals to
minimize the worst case planning cost between any segment. The
final set of sub-goals that minimize planning cost are selected, and
the agent completes the task via visual model predictive control
with the sub-goals in sequence. In this example the task is to push
a block off the table, and then slide the door shut. Given only the
goal image, HVF produces sub-goals for (1) pushing the block off
and reaching to the door and (2) sliding the door shut.

Our key insight is that we can train
a deep generative model, trained ex-
clusively on self-supervised data, as a
means to sample possible states. Once
we can sample states, we also need to
evaluate how easy it is to get from
one sampled state to another, to de-
termine if a state makes for a good
subgoal. We can do so through plan-
ning: running visual MPC to get from
one state to another and measuring
the predicted cost of the planned ac-
tion sequence. Thus by leveraging the
low-dimensional space of a genera-
tive model and the cost acquired by
visual MPC, we can optimize over a
sequence of subgoals that lead to the
goal image. In particular, we can ex-
plicitly search in latent image space
for subgoals, such that no segment is
too long-horizon, mitigating the issues
around sparse costs and compounding
model error.

Hierarchical Visual Foresight: For-
mally, we assume the goal conditioned MDP where the agent has a current state s0, goal state sg , cost
function C, and dataset of environment interaction {(s1, a1, s2, a2, ..., sT , aT )}. This data can come
from any exploration policy; in practice, we find that interaction from a uniformly random policy in
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the continuous action space of the agent works well. From this data, we train both a dynamics model
fθ using maximum likelihood supervised learning, as well as a generative model s ∼ gφ.

Now given s0 and sg , the objective is to find K subgoals s1, s2, ..., sK that enable easier completion
of the task. Our hope is that the subgoals will identify steps in the task such that, for each subsegment,
the planning problem is easier and the horizon is short. While one way to do this might be to find
subgoals that minimize the total planning cost, we observe that this does not necessarily encourage
splitting the task into shorter segments. Consider planning in a straight line: using any point on
that line as a subgoal would equally minimize the total cost. Therefore, we instead optimize for
subgoals that minimize the worst expected planning cost across any segment. This corresponds to the
following objective:

min
s1,...,sK

max{Cplan(s0, s1), Cplan(s1, s2), ..., Cplan(sK , sg)} (1)

where Cplan(si, sj) is the cost achieved by the planner when planning from si to sj , which we
compute by planning a sequence of actions to reach sj from si using fθ and measuring the predicted
cost achieved by that action sequence1. Once the subgoals are found, then the agent simply plans
using visual MPC [24, 32] from each sk−1 to sk until a cost threshold is reached or for a fixed,
maximum number of timesteps, then from s∗k to sk+1, until planning to the goal state, where s∗k is the
actual state reached when running MPC to get to sk. We describe the individual components and
provide algorithm pseudo code in the supplementary material.

4 Experiments

In our experiments, we aim to evaluate (1) if, by using HVF, robots can perform challenging goal-
conditioned long-horizon tasks from raw pixel observations more effectively than prior self-supervised
approaches, (2) if HVF is capable of generating realistic and semantically significant subgoal images,
and (3) if HVF can scale to real images of cluttered scenes. To do so, we test on three domains:
simulated visual maze navigation (in supplement), simulated desk manipulation, and real robot
manipulation of diverse objects. The simulation environments use the MuJoCo physics engine [50].
We compare against three prior methods: (a) visual foresight [24, 32], which uses no subgoals,
(b) RIG [23] which trains a model-free policy to reach generated goals using latent space distance
as cost, and (c) visual foresight with subgoals generated by time-agnostic prediction (TAP) [49],
which generates subgoals by predicting the most likely frame between the current and goal state, a
state-of-the-art method for self-supervised generation of visual subgoals. Lastly, we perform ablation
studies to determine the effect of various design choices of HVF (in supplement)

4.1 Simulated Desk Manipulation
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Figure 2: Quantitative Results for Desk Manipula-
tion: For the challenging desk manipulation tasks, using
the HVF subgoals drastically improves performance.
Across all 4 tasks, HVF with two subgoals has over
a 20% absolute performance improvement over visual
foresight [24], TAP [49], and RIG [23]. Computed over
100 trials with random initial scenes.

We study the performance improvement and
subgoal quality of HVF in a challenging simu-
lated robotic manipulation domain. Specifically,
a simulated Franka Emika Panda robot arm is
mounted in front of a desk (as used in [51]). The
desk consists of 3 blocks, a sliding door, three
buttons, and a drawer. We explore four tasks in
this space: door closing, 2 block pushing, door
closing + block pushing, and door closing + 2
block pushing. Example start and goal images
for each task are visualized in Figure 3, and task
details are in the supplementary material. The
arm is controlled with 3D Cartesian velocity
control of the end-effector position. Across the
4 different tasks in this environment, we use a
single dynamics model fθ and generative model
gφ(z). Experimental details are in the supple-
mentary material.

1We compare max/mean cost in the supplement
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Figure 3: Qualitative Results for Desk Manipulation. Example gen-
erated subgoals from HVF for the desk manipulation tasks with one or
two subgoal. We observe interesting behavior: for example in the Door
Closing + Block Pushing task with one subgoal, the subgoal is to first
push the block and then slide the door, while in the Door Closing + 2
Block Pushing the subgoal is to first push a block then grasp the door.

Results: As seen in Figure 2, we
find that using HVF subgoals dra-
matically improves performance,
providing at least a 20% abso-
lute improvement in success rate
across the board. In the task with
the longest horizon, closing the
door and sliding two blocks off
the table, we find that using no
subgoals or 1 subgoal has ap-
proximately 15% performance,
but 2 subgoals leads to over 42%
success rate. We compare to sub-
goals generated by time agnostic
prediction (TAP) [49] and find
that while it does generate plausi-
ble subgoals, they are very close
to the start or goal, leading to no
benefit in planning. We also com-
pare against RIG [23], where we
train a model free policy in the
latent space of the VAE to reach “imagined” goals, then try and reach the unseen goals. However,
due to the complexity of the environment, we find that RIG struggles to reach even the sampled goals
during training, and thus fails on the unseen goals. Qualitatively, in Figure 3, we also observe that
HVF outputs meaningful subgoals on the desk manipulation tasks. For example, it often produces
subgoals corresponding to grasping the door handle, sliding the door, or reaching to a block.

4.2 Real Robot Manipulation
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Figure 4: BAIR Dataset Qualitative Results. The
subgoals generated by HVF on the BAIR robot data set,
which we find correspond to meaningful states between
the start and goal. For example, when moving objects
we see subgoals of reaching/grasping the object.

Lastly, we aim to study whether HVF can ex-
tend to real images and cluttered scenes. To do
so, we explore the qualitative performance of
our method on the BAIR robot pushing dataset
[52]. We train fθ and gφ(z, s0) on the training
set, and sample current and goal states from the
beginning and end of test trajectories. We then
qualitatively evaluate the subgoals outputted by
HVF. Further implementation details are in the
supplementary material.

Results: Our results are illustrated in Fig. 4.
We observe that even in cluttered scenes, HVF
produces meaningful subgoals, such generating
grasping objects which need to be moved. Ad-
ditionally, when grasping or interacting with
objects, grasping the object is often selected as
a subgoal (top left and bottom right examples in
Fig. 4). For more examples, see supplementary
material.

5 Conclusion
We presented an approach for hierarchical plan-
ning with vision-based tasks, hierarchical visual
foresight (HVF), which decomposes a visual
goal into a sequence of subgoals. By explicitly
optimizing for subgoals that minimize planning
cost, HVF is able to discover semantically mean-
ingful goals in visual space, and when using these goal for planning, perform a variety of challenging,
long-horizon vision-based tasks. Further, HVF learns these tasks in an entirely self-supervised manner
without rewards or demonstrations.
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