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Abstract

Traditional robotic approaches rely on an accurate model of the environment, a
detailed description of how to perform the task, and a robust perception system
to keep track of the current state. On the other hand, Reinforcement Learning
(RL) approaches can operate directly from raw sensory inputs with only a reward
signal to describe the task, but are extremely sample-inefficient and brittle. In this
work we combine the strengths of model-based methods with the flexibility of RL
methods to obtain a general algorithm that is able to overcome inaccuracies in the
robotics perception/actuation pipeline, while requiring minimal training time in
the environment. This is achieved by leveraging uncertainty estimates to divide
the space in regions where the given model-based policy is reliable, and regions
where it may have flaws or not be well defined. In these uncertain regions, we
show that a local RL policy can be learned directly from raw sensory inputs. We
test our algorithm, Guided Uncertainty-Aware Policy Optimization (GUAPO), on a
real-world robot performing tight-fitting peg insertion. Videos are available5.

1 INTRODUCTION AND RELATED WORKS

There have been great advances in making robots learn to act from raw sensory data leveraging
techniques like deep Reinforcement Learning (RL). These methods have successfully been applied to
contact-rich manipulation tasks like object insertion, pushing, and grasping (1; 2; 3; 4). However, RL
methods tend to be sample inefficient, requiring too many training interactions with the environment
to be practical for real world applications. To mitigate this limitation, many prior works carefully
tune densely shaped rewards, which often requires explicit knowledge of the state of the world, such
as a goal location (1). On the other hand, given a precise model and current state of the world, there
are many algorithms to plan, engineer, or search for policies to accomplish the task (5; 6). This kind
of model-based (MB) strategies have been shown for many manipulation tasks, such as peg insertion,
grasping, and reaching (7; 8; 9; 10). Nevertheless, MB strategies can be crippled by model bias and
state estimation errors, and often reach lower asymptotic performance (11; 12).

In this work, we want to combine the sample efficiency from a Model-Based (MB) policy, but
overcome the errors in dynamics and perception with a Reinforcement Learning (RL) policy that
closes the loop on raw sensory data. Recent works have also combined model-based and RL
∗Equal contribution as well as work performed during an internship at NVIDIA
†Department of Computer Science at Stanford University, mishlee@stanford.edu
‡Department of Computer Science, University of California at Berkeley, florensa@berkeley.edu
§NVIDIA, [jtremblay, nratliff, animeshg, fabior, dieterf]@nvidia.com
5https://sites.google.com/view/guapo-rl

NeurIPS 2019 Workshop on Robot Learning: Control and Interaction in the Real World, Vancouver, Canada



"̂u n certain

"free
πMB

πRL

t t + 1
Figure 1: Real-world setup for peg insertion: one perception system (in orange) gives the approximate position
of the relevant objects. The model-based method drives the system within the uncertainty area (in blue). Once
inside this area the model can’t be trusted, and a reinforcement learning policy is learned directly from the raw
sensory inputs of another "local" camera (in blue) that gives enough information to complete the task.

approaches, Johannsmeie et al. uses a learning algorithm to find the best parameters that describe the
behavior of the agent based on a model-based template (13). The learning is very efficient, but at
the cost of an extremely engineered pre-solution that also relies on an accurate perception system.
Another line of work that allows to combine model-based and RL methods is Residual Learning
(14; 15), where RL is used to learn an additive policy that can potentially fully over-write the original
model-based policy. Nevertheless, these methods are hard to tune, and hardly preserve the benefits of
the underlying model-based method once trained.

In our work, we first leverage the efficiency of a model-based method to move in a free space
environment (6; 16; 17; 18), space where collisions with solid environment or human beings are
impossible. Then, we use the capacity of a learning-based method to learn from its environment and
a loosely define goal. In order to accomplish such system we also introduce a perception system
that can predict pose uncertainties to help the system fuse the MB and RL policies. Figure 1 shows
an overview of our system, the task is initialized with a MB policy (πMB) where it moves the robot
within the range of the uncertainties of the object of interest, e.g., the box where to insert the peg.
Once we have reached the uncertainty region, we switch to a RL policy (πRL) to finish the task. At
learning time, we leverage information from πRL to reduce the perception system’s uncertainties.

Our system effectively uses uncertainty to mix MB and RL policies to accomplish complicated tasks
that require environment interactions which would be quite challenging when either method is used
alone. Therefore, we call our algorithm Guided Uncertainty Aware Policy Optimization (GUAPO).
We demonstrate our novel algorithm is sample efficient on real world robots on a peg insertion task,
and compare our algorithm to learning-based and model-based approaches.

2 PROBLEM STATEMENT

We tackle the problem of learning to perform an operation, unknown a-priori, in an area of which
we only have an estimated location and no accurate model. We formalize this problem as solving
a Markov Decision Process (MDP), where we want to maximize a certain reward r : S → R by
learning a policy π : S ×A → R+ that is a probability distribution over actions a ∈ A, given a state
s ∈ S . The first assumption we leverage in this work can be expressed as having a partial knowledge
of the transition probability P : S × A× S → R+ dictating the probability over next states when
applying a certain action to the current state. Specifically, we assume this transition is available
only within a sub-space of the state-space Sfree ⊂ S. This is a common case in robotics, where it is
perfectly known how the robot moves while it is in open-space, but there are no reliable and accurate
models of general contacts and interactions with its surrounding. This partial model can be combined
with well established methods able to plan and execute trajectories that traverse Sfree, but these
methods are hard to use for successfully completing tasks that require acting in Suncertain = S \ Sfree.

The tasks we consider consist on reaching a particular state or configuration through interaction
with the environment, like peg-insertion, switch-toggling, or grasping. These tasks are conveniently
defined by a binary reward function, r(s) = 1[s ∈ Sg], indicating the goal set is reached successfully,



(a) DOPE uncertainty estimation of Ŝuncertain (b) πRL variational autoencoder architecture
Figure 2: Perception modules for the model-based component (left) and learning-based component (right)

Sg ⊂ Suncertain. Unfortunately this reward is extremely sparse, and standard exploration strategies
from a random initial configuration might take an unreasonable amount of samples to discover it.
Furthermore, we do not assume knowledge of the exact location of Suncertain, but rather only access to
a noisy estimate of it. Therefore the question we address in this paper is how to leverage the partial
model described above to efficiently learn to solve the full task, overcoming an imperfect perception
system and dynamics.

3 METHOD

Given that the dynamics are not known precisely around the area where the desired configuration is,
a learning-based method needs to be used to perform the task. Nevertheless, learning a RL policy
from scratch using raw image inputs is extremely inefficient and brittle because it needs to learn how
to control the robot everywhere, and every time the position of the goal changes, the task may look
completely different. The main insight in our work is that a partial model can still be leveraged with
a model-based method that only acts in the regions where the model is trusted, hence considerably
off-loading the learning process of the RL algorithm and making it more invariant to the absolute
goal location.

In this section, we propose a method to generate a super-set Ŝuncertain of Suncertain based on the
perception system uncertainty estimation. Then we describe a MB algorithm that can now confidently
be used outside of Ŝuncertain to bring the robot within that set. We also define the parameters of our
RL policy, and how the learning can be more efficient by making its inputs local. Finally we present
initial experimental results.

From coarse perception to the learning-based workspace. Coarse perception systems are usually
cheaper and faster to setup because they might require simpler hardware like RGB cameras, and can
be used out-of-the box with excessive tuning and calibration efforts. If we use this system to directly
localize Suncertain, the perception errors might misleadingly indicate that a certain area belongs to Sfree,
hence trying to apply the MB policy and potentially not being able to learn how to recover from there.
Instead, we propose to use a perception system that also gives an uncertainty estimate. For example,
many methods can represent the uncertainty by a nonparametric distribution, with n possible poses
of the region {Siuncertain}ni=1 and their associated weights p(Siuncertain). Interpreting these weights as
the likelihoods, we can express the likelihood of a certain state s belonging to Suncertain as:

p(s ∈ Suncertain) =

n∑
i=1

1[s ∈ Siuncertain]p(Siuncertain) (1)

We now define Ŝuncertain = {s : p(s ∈ Suncertain) > ε}, where ε is set by the user. A more accurate
perception system would make Ŝuncertain a tighter super-set of Suncertain, hence further reducing the
area where the learning-based method is required. Defining α = 1[s ∈ Ŝuncertain], the overall policy
we use is:

π(a|s) = (1− α) · πMB(a|s) + α · πRL(a|s), (2)

where πMB(a|s) and πRL(a|s) are the model-based and learning-based policies respectively. We now
detail how each of these policies are obtained.

Model-based method. In the previous section we have defined the region Ŝuncertain, the region
where we know there is a certain reward to achieve the task, but not how to do so. In our problem
statement we assume that outside that region, the environment model is well known, and therefore
it is amenable to use a model-based approach. Therefore, whenever we are outside of Ŝuncertain,



Table 1: Real World Peg Insertion Results out of 30 Trials. The first row indicates percentage of full peg insertion.
The second is the speed of insertion (in terms of steps ) of the trained policy. The last two indicates how likely is
the method to enter Suncertain and Ŝuncertain

MB-
Perfect

MB-
DOPE

MB-RA
Perfect

MB-RA
DOPE SAC RESIDUAL (14) GUAPO (ours)

Success Rate 100% 0% 86.67% 26.6% 0% 0% 93%
Avg. Steps for

Task Completion 158.3 n/a 554.1 925.4 n/a n/a 469.6

In Suncertain 100% 0% 100% 70.0% 0% 0% 100%
In Ŝuncertain 100% 100% 100% 93.3% 0% 100% 100%

the model-based approach brings the robot back into it. The most straight-forward way is to pick
a specific point within Suncertain, like its centroid, which can be found as the maximum likelihood
estimate from the perception system, and set that location as a target for the model-based method.

Our formulation can be extended to account for multiple goals or task requirements. For example,
if there is an obstacle needs to be avoided, and there is an uncertainty about its location, we can
describe Ŝuncertain = Ŝgoal

uncertain t Ŝobst
uncertain, where Sg ⊂ Ŝgoal

uncertain and r(s) = −1 ∀s ∈ Ŝobst
uncertain. Then

an obstacle-avoiding MB policy can be used to get to the area where to goal is while avoiding the
regions where the obstacle might be, as shown in our videos6.

Learning-based method. Once πMB has brought the system within Ŝuncertain, the controlled is
handed-over to πRL as expressed in Eq. 2. Note that our switching definition goes both ways, and
therefore if πRL takes exploratory actions that move it outside of Ŝuncertain, then the MB will act again
to funnel the state to the area of interest. This also provides a framework for safe learning (19) in
case there are obstacles to avoid as introduced in the section above. There are several advantages to
having a more restricted area where the RL needs to learn how to act: first the exploration becomes
easier, and second the policy can be local. In particular, we only feed to πRL the images from a
wrist-mounted camera and its current velocities, as depicted in Fig. 2b. Not having global information
like the one provided by the perception system in Fig. 2a can make the RL policy generalize better
across locations of Ŝuncertain. Finally, we propose to use an off-policy RL algorithm such that all the
observed transitions can be added in the replay buffer, no matter if they come from πMB or πRL.

Closing the RL-MB loop. This framework also allows to use any newly acquired experience to
reduce Ŝuncertain such that successive rollouts can use the MB policy in larger areas of the state-space.
For example, in the peg-insertion task, once the reward of fully inserting the peg is received the
location of the opening is immediately known, and therefore we can update Ŝuncertain = Suncertain,
where now the RL policy only needs to do the actual insertion and not keep looking for the opening.

Experimental Design. In order to test our algorithm, we set up a peg insertion task in the real world
(see Fig. 1), on the Franka Panda robot, a 7-DoF torque-controlled robot. Because our algorithm is
agnostic to the model-based algorithm and perception system, the details of our set up can be found
in Appendix A. We compare our method (GUAPO) with a model-based policy that has a perfect
estimate of where the hole is (MB-Perfect), a model-based policy using our perception system’s goal
estimate (MB-DOPE), model-based policy with additive Gaussian random action noise with perfect
perception (MB-RA-Perfect) and with our perception goal estimate (MB-RA-DOPE), model-free
soft-actor critic (SAC), and a residual policy (Residual) (14). GUAPO uses sparse rewards, while
SAC and Residual use a dense reward described in Appendix A. For GUAPO, SAC, and Residual,
we ran the learning for 60 training episodes (1000 steps per episode), which took roughly 90 minutes
to train. To evaluate each method, we ran 30 rollouts per policy, and recorded the success rate in
Table 1.

6https://sites.google.com/view/guapo-rl



4 DISCUSSION AND CONCLUSIONS

Our preliminary results in the real world show learning of a tight-fitting peg insertion task five times
faster than recent prior work (1), by properly leveraging a coarse perception system and a sparse
reward.
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A Implementation details

A.1 Perception Module

On the real robot system, we use the Deep Object Pose Estimator (DOPE) (20) as our perception
system. DOPE uses a simple neural network architecture that can be quickly trained with synthetic
data and domain randomization using NDDS (21). The algorithm first finds the object cuboid
keypoints using a local peak on the map. With the cuboid real dimensions, camera intrinsics, and the
keypoint locations, DOPE runs the PnP algorithm to find the final object pose in the camera frame.
For this work we extended DOPE perception system to predict uncertainty estimates with the object
pose. This extension augments the peak estimation algorithm by fitting a 2d gaussian around the
found peak. We then run the PnP algorithm multiple times where each keypoint is sampled from its
respective 2d gaussian. This gives us the pose of the object, as well as an uncertainty estimate with
each dimension of the pose as depicted in Fig. 2a. We set the camera for DOPE mounted on top of
our workspace, as seen in Fig. 1.

A.1.1 Model-based Controller Design

We use target attractors with impedance control in end-effector space, an action space which has been
shown to improve sample efficiency for policy learning (22). Specifically on the real robot, we use
target attractors defined by Riemannian Motion Policies (RMPs) (23) to move the robot towards a
desired end-effector location. The RMPs take in a desired end-effector position xx ∈ R3 in Cartesian
space. Both MB and RL policies are sending end-effector position commands at 20Hz. The RMPs
are computing desired joint positions qd at 1000Hz.

For the peg insertion task, the pure model-based policy goes to the goal location and once it reaches
within a threshold (the L2 distance of 0.005cm), the policy pushes down to attempt to insert.
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A.1.2 Learning-based Policy Control

We use a state-of-the-art model-free off-policy Reinforcement Learning (RL) algorithm, Soft Actor
Critic (24). The RL policy acts directly from raw sensory inputs. This consists on joint velocities and
images from a wrist-mounted camera (64x64x3 RGB images from a Logitech Carl Zeiss Tessar) on
the robot (see Fig. 1). As illustrated in Fig. 2b, all inputs are fed into a β-VAE (25), which gives us
a low-dimensional latent-space representation of the state. The parameters of this VAE are trained
before-hand on a data-set collected off-line. The only part that is learned by the RL algorithm is
a 2-layer MLP that takes as input the 64-dimensional latent representation given by the VAE, and
produces 3D position displacement ∆x of the robot end-effector.

A.2 Rewards

For our GUAPO policy, we use a sparse reward when the policy finishes the task (inserts the peg).
The policy gets -1 everywhere, and 0 when it finishes the task. For SAC and Residual, we use a
negative L2 norm to the perception estimate of the goal location, a 0 reward when it reaches Ŝuncertain,
and 1 when it finishes the task.
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