
Deep Reinforcement Learning for Biomimetic Touch:
Learning to Type Braille

Alex Church ∗

University of Bristol
ac14293@bristol.ac.uk

John Lloyd
University of Bristol

jl15313@bristol.ac.uk

Raia Hadsell
Google Deepmind
raia@google.com

Nathan F. Lepora
University of Bristol

n.lepora@bristol.ac.uk

Abstract

Tactile robotics and reinforcement learning are two areas that are concerned with
interaction between an agent and an environment yet research concerning this
overlap has not reached significant milestones. Here we present a challenging
tactile robotics environment, learning to type on a braille keyboard, for use with
deep reinforcement learning algorithms. Preliminary results show that successful
learning can take place directly on a physical robot equipped with a biomimetic
tactile sensor (the TacTip), based on the human fingertip.

1 Introduction

Reinforcement Learning (RL) is an algorithm that learns through interaction with an environment
and touch is the primary sense that humans and animals use to interact with their environment.
Modern Deep Reinforcement Learning (DRL) algorithms allow for more general learning from high
dimensional sensory input, yet most research has focused on vision sensors, while touch has received
comparatively low levels of interest. This trend continues when DRL is applied to physical robots
where most research uses either proprioception or vision to make up an observation. The two fields
of reinforcement learning and tactile sensing overlap but the combination has yet to reach significant
milestones. Here we will focus on connecting the two fields in the context of a human-relevant task.

The field of deep reinforcement learning has seen rapid progress in part due to benchmark suites
allowing new ideas to be directly compared to previous work. The majority of these have focused
on simulated environments such as the Arcade Learning Environment [1], continuous control envi-
ronments [2, 3] and simulated, robotics-focused environments [4, 5]. There have been some calls
to establish physical robot benchmarking suites [6], however due to the cost of robotics equipment
they are difficult for the field to adopt. In the narrower field of tactile robotics there are no available
benchmarks to evaluate and compare new ideas. In this paper we propose a challenging tactile
robotics environment which is intended to serve as a tool for experimentation and fine-tuning of DRL
algorithms being applied to tactile robotics. The environment consists of a keyboard with braille
keycaps, combined with a controllable robotic arm equipped with a tactile sensor. The primary
task in this environment involves learning to type a key or sequence of keys, and has a number of
interesting attributes: it is goal driven, contains both continuous and discrete action spaces, uses
sparse rewards, and will likely be challenging in terms of exploration. All of these features help to
make the task representative of other robotics and tactile robotics challenges. This environment also
requires minimal human intervention and is relatively fast to run, ideal properties for RL algorithms.

∗AC, JL and NL are with the Dept of Engineering Mathematics and Bristol Robotics Lab, Bristol, U.K.

NeurIPS 2019 Workshop on Robot Learning: Control and Interaction in the Real World, Vancouver, Canada



In this study a challenging problem is that the physical properties of the artificial tactile sensors are
difficult to simulate; this motivates us to train directly on a physical robot. There are a variety of
DRL algorithms in common use [7, 8, 9, 10, 11, 12], but the majority of these are not applicable for
learning on the physical robot, either because they suffer from poor sample efficiency, brittleness
with respect to hyper-parameters, or are only applicable to discrete action spaces (whereas our task
requires both discrete and continuous actions). There are currently two algorithms that meet the
criteria for learning directly on a physical robot, SAC [13] and MPO [14], both of which offer good
sample efficiency, robustness to hyper parameter selection and work with either continuous or discrete
action spaces. Whilst the simulated results of MPO appear to be the strongest, SAC has seen the most
following research and a slightly revised version has shown evidence of successful training when
directly applied to physical robots even whilst using image observations [15].

2 Biomimetic Tactile Sensing

(a)

(b)

(c)

Figure 1: (a) Exploded view of the TacTip sensor design.
(b) Camera view of the 331 pins in the dense, 25mm
diameter sensor design. (c) Thresholded image from the
sensor as it is pressed onto an ‘UP’ arrow key from the
braille keyboard described below.

The TacTip (Figure 1) [16] is a low-cost,
robust, 3D-printed optical tactile sensor
based on a human fingertip. The human
sense of touch corresponds with the defor-
mation of the dermal and epidermal layers
of the skin which is detected and relayed
through mechanoreceptors [17]. The de-
sign of the TacTip builds upon research
that showed that the Merkel Cell Complex
(MCC) of sensory receptors works in tan-
dem with the morphology of intermediate
ridges. This biological structure is mim-
icked in the TacTip, by replacing interme-
diate ridges with internal pins, attached to
a skin-like membrane. The detection of de-
formation in the artificial skin is captured
as movement in these pins via an internal
camera in place of the MCC. The camera
view of this sensor design is shown in Fig-
ure 1b. Adaptive thresholding is used to
preprocess the raw tactile image to a bi-
nary image, this makes the effects of de-
formation of the sensor more apparent (see
Figure 1c).

Most of the initial work and some of the most impressive results in DRL research have used images as
the observational spaces [18, 15]. This allows for some of the advances in deep learning for computer
vision to be leveraged for use in DRL algorithms. The TacTip offers a high-dimensional artificial
tactile sense in the form of images. On top of this, the design of the TacTip transfers the tactile images
into a more simplistic form allowing for networks to be relatively small yet capture a significant
amount of tactile information. The design of the TacTip has also been demonstrated to cope well
with continuous interaction with an environment including tapping and sliding on edges for hours
at a time. The application of supervised deep learning to the images obtained from the TacTip has
seen recent success, with a single sensor shown to achieve highly robust contour following [19] and
multiple sensors, incorporated onto a robotic hand, proposed for grasp success prediction and item
classification [20].

3 Braille Learning Task

The primary task is to successfully press a target, or goal key that is randomly selected per episode
from a subset of keys on a braille keyboard. A positive reward of +1 is given for successfully pressing
a goal key, a negative reward of −1 is given for pressing an incorrect key. Currently there is no
negative reward associated with movement of the sensor however use of a small penalty per action

2



could encourage more efficient typing. Successful learning of this task will result in an average
episodic return of 1 or very near.

In order to successfully complete a task the DRL algorithms will need to be able to interpret a button
before pressing it. To help with this, a keyboard with relatively stiff key switch has been used. We
use the DREVO Excalibur 84 Key Mechanical Keyboard with Cherry MX Black switches. These
switches have a linear pressing profile and require 60cN of force and 2mm of travel before actuation
occurs. On top of this Cherry keys have good build quality making them consistent across keys. The
keycaps shown in Figures 2 have been designed to attach to Cherry MX switches.

Figure 2: Braille alphabet used for the tactile key-
board environment. Space consists of no tactile
information and the arrows allow for a separate,
smaller and easier challenge.

The tactile keyboard environment can accom-
modate several different tasks of varying diffi-
culty, a list of proposed tasks can be found in
the appendix (Table 1). Due to the positioning
on the keyboard the arrow keys can be sepa-
rated from alphabet (including space) keys. As
there are fewer arrow keys and they have a sym-
metric arrangement the tasks using only arrow
keys should be easier than those using the full
alphabet keys. Additionally as the state space
is significantly smaller for the arrow tasks it
should encounter positive rewards during ran-
dom exploration; however, learning a task that
covers the full set of alphabet keys will likely
require an approach such as Hindsight Experi-
ence Replay (HER) [21] to improve data effi-
ciency. When using the discrete action space the sensor automatically taps a key after each movement.
This tapping movement will not activate the button but will ensure there is a tactile image where the
sensor is under some deformation.

Incorporating continuous control is needed to make this task more representative of other tactile
robotics tasks. However, giving the robot full continuous control may result in damage occurring
to the sensor or keyboard. To aid this we restrict ∆x,∆y actions to movement in a plane above
the keyboard, the ∆z action then becomes a prediction of tap depth. To aid performance we add a
constant to the predicted tap depth, similarly to the discrete case this will ensure there is a tactile
image where the sensor is under some deformation.

4 Initial Test with Supervised Learning

An initial step in this paper is to ensure that the braille keys can be interpreted on the TacTip sensor
whilst the keys are attached to a keyboard and without exerting enough force to activate the button.
To test this we performed a supervised learning task of classifying all keys shown in Figure 2. There
were 100 samples collected per key for training and 50 sample collected per key for validation,
resulting in 3100 training images and 1550 validation images. Each tactile image was collected at
the bottom of a tapping motion. The sensor was positioned 3.5mm above the centre of each key, the
tapping motion consists of moving downwards 5mm, this avoids pressing the key passed its 2mm
actuation point. A random z variation sampled from the interval (−1, 0)mm was used; this moves
the position of the sensor away from the keys and ranges from barely touching to nearly actuating the
button. A similar random x, y perturbation was sampled from (−1,+1)mm and a random orientation
perturbation was sampled from (−10◦, 10◦) to add some variation in the collected data.

Adaptive thresholding is used on the input images to create a binary image with focus directly onto
the pins. Data augmentation including random shifting and zooming of the images are used along
with early stopping and a decaying learning rate. The network used in this challenge is a relatively
simple convolutional neural network that contains 5 convolutional layers and 2 fully connected layers.
Batch-normalization is used on the convolutional layers after the activation and dropout is used on
the fully connected layers. A near perfect overall accuracy of 99% is achieved demonstrating that the
braille is interpretable on the tactile sensor without actuating a button. This shows that using DRL to
perform tasks in this environment should be possible. As well as this, the trained supervised networks
can be used for initialisation of the networks used in DRL.

3



5 Preliminary Results with Deep Reinforcement Learning

Figure 3: Training curves showing the average episodic return for the discrete arrow task (left) and
discrete alphabet task (right). Each epoch corresponds to 250 steps in an environment.

The initial attempt at learning this problem focused on the simpler, discrete action setting. The states
in this task consist of a grid layout, where the sensor can be positioned over the centre of each key and
some additional empty spaces. The arrow keys are arranged as shown in Figure 2 with empty spaces
on the left and right of the UP key. The observations consist of a 100× 100× 1 image captured with
the TacTip sensor, a threshold is then applied to create a binary image. To boost performance this
image is passed through the pre-trained convolutional stages of the network used in the supervised
classification task, these weights have been frozen and are not updated during training. This results
in a 144 dimensional latent space that contains enough information for interpreting the images. As
this task uses a discrete action space, discrete DRL algorithms are viable options. Here we use a
modified version of the standard DQN algorithm with both the dueling [22] architecture and double
Q learning improvement [23]. A one-hot encoding of both the target key and the previous action are
concatenated onto the flattened convolutional output, two 512 node fully connected layers are then
attached. These are used to predict a separate state value V (s) and state dependent action advantages
Q(s, a), used both in training the algorithm and for deciding which action to take.

For the arrow task the algorithm is able to successfully complete the task, consistently achieving
an average episodic return of 1 or near. Figure 3 demonstrates that this successful learning occurs
at around 40 epochs (10000 steps/2 hours of training). For the alphabet case the challenge is more
difficult and therefore more epochs are necessary for training. After 200 epochs (50000 steps/10
hours of training) near successful training has occurred. Observing the robot at test time shows that
near optimal policy has been successfully learnt. With deterministic actions incorrect key presses
are avoided however the policy will sometimes be averse to the press action and can result in the
sensor hovering above a goal key without activating it. It is likely that this will be resolved with more
training time or hyper parameter tuning.

6 Conclusion

Here we have presented a challenging new environment designed for the fine tuning and optimising
of deep reinforcement learning algorithms for their application to tactile robotics challenges. The
environment contains features such as continuous control and sparse rewards that help to make it
representative of other tactile robotics tasks. There are several proposed tasks using this environment,
each with varying levels of difficulty. Preliminary results show that successful training can occur
directly on a physical robot within a relatively short time period. One of the techniques used that allow
for this fast successful training is the pre-training and freezing of convolutional weights used in the Q
network. This significantly reduces the complexity of the network whilst capturing the necessary
information from an image observation. Whilst supervised learning has been used to pre-train these
convolutional weights other solutions are viable; variational auto-encoders and random features are
other techniques that warrant further exploration.

4



References
[1] Marc G. Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The Arcade Learning

Environment: An Evaluation Platform for General Agents. Journal of Artificial Intelligence
Research, 7 2012.

[2] Yan Duan, Xi Chen, Rein Houthooft, John Schulman, and Pieter Abbeel. Benchmarking
Deep Reinforcement Learning for Continuous Control. International Conference on Machine
Learning (pp. 1329-1338), 4 2016.

[3] Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David
Budden, Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, Timothy Lillicrap, and Martin
Riedmiller. DeepMind Control Suite. arXiv preprint arXiv:1801.00690, 1 2018.

[4] Matthias Plappert, Marcin Andrychowicz, Alex Ray, Bob McGrew, Bowen Baker, Glenn
Powell, Jonas Schneider, Josh Tobin, Maciek Chociej, Peter Welinder, Vikash Kumar, and
Wojciech Zaremba. Multi-Goal Reinforcement Learning: Challenging Robotics Environments
and Request for Research. arXiv preprint arXiv:1802.09464, 2 2018.

[5] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang,
and Wojciech Zaremba. OpenAI Gym. arXiv preprint arXiv:1606.01540, 6 2016.

[6] A. Rupam Mahmood, Dmytro Korenkevych, Gautham Vasan, William Ma, and James Bergstra.
Benchmarking Reinforcement Learning Algorithms on Real-World Robots. arXiv preprint
arXiv:1809.07731, 9 2018.

[7] John Schulman, Sergey Levine, Philipp Moritz, Michael I. Jordan, and Pieter Abbeel. Trust
Region Policy Optimization. International conference on machine learning (pp. 1889-1897), 2
2015.

[8] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
Policy Optimization Algorithms. arXiv preprint arXiv:1707.06347, 7 2017.

[9] Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves, Timothy P. Lilli-
crap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous Methods for Deep
Reinforcement Learning. International conference on machine learning (pp. 1928-1937), 2
2016.

[10] Matteo Hessel, Joseph Modayil, Hado van Hasselt, Tom Schaul, Georg Ostrovski, Will Dab-
ney, Dan Horgan, Bilal Piot, Mohammad Azar, and David Silver. Rainbow: Combining
Improvements in Deep Reinforcement Learning. Thirty-Second AAAI Conference on Artificial
Intelligence, 10 2017.

[11] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval
Tassa, David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning.
arXiv preprint arXiv:1509.02971, 9 2015.

[12] Scott Fujimoto, Herke van Hoof, and David Meger. Addressing Function Approximation Error
in Actor-Critic Methods. arXiv preprint arXiv:1802.09477, 2 2018.

[13] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft Actor-Critic: Off-
Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor. arXiv preprint
arXiv:1801.01290, 1 2018.

[14] Abbas Abdolmaleki, Jost Tobias Springenberg, Yuval Tassa, Remi Munos, Nicolas Heess,
and Martin Riedmiller. Maximum a Posteriori Policy Optimisation. arXiv preprint
arXiv:1806.06920, 6 2018.

[15] Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan,
Vikash Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, and Sergey Levine. Soft Actor-Critic
Algorithms and Applications. arXiv preprint arXiv:1812.05905, 12 2018.

[16] Benjamin Ward-Cherrier, Nicholas Pestell, Luke Cramphorn, Benjamin Winstone, Maria Elena
Giannaccini, Jonathan Rossiter, and Nathan F. Lepora. The TacTip Family: Soft Optical Tactile
Sensors with 3D-Printed Biomimetic Morphologies. Soft Robotics, 5(2):216–227, 4 2018.

5



[17] Roland S. Johansson and J. Randall Flanagan. Coding and use of tactile signals from the
fingertips in object manipulation tasks. Nature Reviews Neuroscience, 10(5):345–359, 5 2009.

[18] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing Atari with Deep Reinforcement Learning. arXiv
preprint arXiv:1312.5602, 12 2013.

[19] Nathan F. Lepora, Alex Church, Conrad De Kerckhove, Raia Hadsell, and John Lloyd. From
pixels to percepts: Highly robust edge perception and contour following using deep learning
and an optical biomimetic tactile sensor. IEEE Robotics and Automation Letters, 12 2018.

[20] Alex Church, Jasper James, Luke Cramphorn, and Nathan Lepora. Tactile Model O: Fabrication
and testing of a 3d-printed, three-fingered tactile robot hand. arXiv preprint arXiv:1907.07535,
7 2019.

[21] Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder,
Bob McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Wojciech Zaremba. Hindsight Experience
Replay, 2017.

[22] Ziyu Wang, Tom Schaul, Matteo Hessel, Hado van Hasselt, Marc Lanctot, and Nando de Fre-
itas. Dueling Network Architectures for Deep Reinforcement Learning. arXiv preprint
arXiv:1511.06581, 11 2015.

[23] Hado van Hasselt, Arthur Guez, and David Silver. Deep Reinforcement Learning with Double
Q-Learning. Thirtieth AAAI Conference on Artificial Intelligence, 3 2016.

6



7 Table of Proposed Tasks used for the Braille Keyboard Environment

Table 1: List of proposed tasks to be learned in the tactile keyboard environment and their expected
difficulty. Difficulty levels range from 1-4 with 1 being easiest, 4 being hardest.

Name Difficulty Buttons Used Action Space Action List

Disc-Arrow 1 Arrows Discrete {UP, DOWN, LEFT,
RIGHT, PRESS}

Disc-Alpha 2 Alphabet Discrete {UP, DOWN, LEFT,
RIGHT, PRESS}

Cont-Arrows 3 Arrows Continuous {∆x, ∆y, ∆z}

Cont-Alpha 4 Alphabet Continuous {∆x, ∆y, ∆z}

7


	Introduction
	Biomimetic Tactile Sensing
	Braille Learning Task
	Initial Test with Supervised Learning
	Preliminary Results with Deep Reinforcement Learning
	Conclusion
	Table of Proposed Tasks used for the Braille Keyboard Environment

