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Abstract

In this work, we propose a novel method for demonstration-efficient imitation
learning using an interplay between a policy network, a learned dynamics net-
work, and an uncertainty network. We introduce an active learning algorithm that
allows the agent to actively select which particular instances of the task it wants to
see solved by the expert. We empirically demonstrate how this method increases
task-solving performance by a substantial margin. We also show how the agent is
able to autonomously predict failure rapidly using this method, improving safety
in real-world experiments.

1 Introduction

To teach robots complex tasks, one promising avenue of research is Imitation Learning (IL), and
in particular Behavioural Cloning (BC). In BC, an expert collects a series of demonstrations of
how to solve a task, and an agent then learns to imitate the expert when facing new instances of
the task through supervised learning. This method has been applied successfully to a variety of
tasks (Zhang et al. [2018], Bojarski et al. [2016]). Showing how to solve a task can be, in several
cases, easier and faster than hand-crafting a complex reward function. Nevertheless, numerous
demonstrations can be necessary in order for the agent to generalize successfully to new, unseen
scenarios. This can be time-consuming for the expert. Furthermore, if the agent passively receives
a series of demonstrations, it’s not immediate to understand at train time the state-space regions in
which its uncertainty is high, and that can hence bring to a failure, or worse to a series of dangerous
actions for the robot and its surroundings.

In this work, we propose a novel method to tackle these aforementioned problems using an interplay
between a policy network, a learned dynamics network, and an uncertainty network: we developed
and tested an active learning algorithm that allows the agent to actively select which particular
instances of the task it wants to see demonstrated by the expert. By computing a degree of familiarity
to the proposed instance of the task, the agent can prevent the expert from solving instances that are
familiar and hence less useful to add to the training set, thus being more time and sample efficient,
but also to focus on instances that are particularly unfamiliar, and are hence more probable to result
in a failure. Our method is based on Denoising Autoencoders for uncertainty estimation (Vincent
et al. [2010], Arponen et al. [2017]). We show how these networks can be successfully used to
compute an approximation of the uncertainty of the agent in various parts of the state space, as also
shown in the literature, and how they can predict the probability of success of the robot on a certain
instance of the task in an unsupervised way. Using this information, the agent can then decide which
demonstrations are more useful to lower the general uncertainty and increase its chances of success
at test time. We empirically demonstrate how this active learning method increases performance by
a substantial margin. For our experiments, we use two robot manipulation tasks: bringing a cube to
a desired position and stacking two cubes on a desired position, both with the Fetch robot. We use
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the MuJoCo physics simulation (Todorov et al. [2012]). The main contributions of this work are the
following:

• We propose a novel method for active robot learning, using an interplay between a Policy
Network, a learned world model, and Denoising Autoencoders.

• We demonstrate the ability of this method to rapidly predict failures at test time, avoiding
possibly dangerous situations that could harm the robot and its environment.

• We demonstrate how these predictions can be used to actively select the most uncertain
instances of the task, in order to minimize the number of required demonstrations.

2 Related Work

Learning from Demonstration using deep neural networks applied to robots has shown impressive
results in recent years. (Zhang et al. [2018], James et al. [2018]). Lynch et al. [2019], Sermanet et al.
[2018], Zhang et al. [2018] showed how virtual-reality can be a straight forward and quick way to
provide demonstrations to the agent.

Di Palo and Valpola [2018], Boney et al. [2019], Zhu and Laptev [2017], Arponen et al. [2017]
demonstrated how (denoising) autoencoders can be used for detecting out-of-distribution inputs and
regularizing their effects on neural networks, with Boney et al. [2019] comparing them to ensemble
methods.

In the context of active learning, Ross et al. [2011] proposed DAgger, a popular active imitation
learning algorithm. Several variants have been proposed over the years (Menda et al. [2018, 2017]),
but these methods require an expert to label a set of states visited by the agent’s policy, a method
that cannot be applied easily to real-world systems with a human expert. Kelly et al. [2019] extends
these methods to give control to a human expert without querying them on single states.

3 Architectures and Method

Inspired by previous works on imitation learning, we use a feed-forward neural network to
parametrize our policy, taking as input the current state and desired goal, and computing as out-
put the action. The policy network is trained with Behavioral Cloning. To model the uncertainty of
the agent, we use Denoising Autoencoders. As a learned dynamics model, we use a feed-forward
network that takes as input the current state and action and predicts the one step difference ∆x̂t+1

such that x̂t+1 = xt + ∆x̂t+1 (Nagabandi et al. [2018]).

The Autoencoder is a feed-forward network that takes as input the current state and desired goal,
that during training time is corrupted with Gaussian noise, x̃, and is trained to give as output the
denoised input, e =

∑
i(xi − gθ(x̃)i)

2, where e is the denoising error that we wish to minimize
with gradient descent. The denoising error will be a proxy of the familiarity of the agent with the
state and goal at hand: if those were part of the previous training samples, the errors will be lower,
while being higher on novel states or goals (Di Palo and Valpola [2018], Boney et al. [2019]). In the
following we will also refer to the Autoencoder as the Uncertainty Network.

To compute the uncertainty of a particular state, we use an interplay of the three previously men-
tioned networks, as we show in Figure 1. From a state st, we use the Policy Network and the
Dynamics Network to predict the future states that the agent will encounter following its current
policy, st+1, ..., st+T . We use the Autoencoder to compute the aforementioned error on each of
those states, and then average the result. This value is used as a proxy for the uncertainty of the cur-
rent state. We show empirically how using the future uncertainty allows the agent to predict failures
more quickly, adding safety to the experiments.

We designed the following experiments to compare the final performance of the agent using Passive
Learning and Active Learning, reducing all possible influences of external factors. We sample a set
of M instances of the task that will be used as a test set, and will be unseen during training. We
sample a set N of instances of the task we wish to solve, providing N demonstrations to the agent
in the form of trajectories of states and actions (s0, a0, ..., sT , aT ).

For Passive Learning, we sample N additional instances of the task, providing demonstrations.
Finally, we train the Policy Network on these 2N trajectories.
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Figure 1: Left: picture of the 2 Cubes task with Fetch Robot. Right: Diagram describing the overall
interplay between the networks. The Policy Network and Dynamics Network predict an imagined
rollout of T steps. The DAE predicts uncertainty on this rollout, then averages all the outputs ûi.
Blue color denotes values in imagined rollout. A detailed description can be found in the Appendix.

During the Active Learning part we follow these steps: we train the Policy Network, the Dynamics
Network and the Uncertainty Network on the N demonstrations. Then, we initialize an instance
of the task and let the agent try to solve it and measure its uncertainty online at each step. If the
uncertainty becomes greater than a threshold, the agent autonomously stops and asks for a demon-
stration on how to solve the task starting from where it stopped. This method is useful to let the
agent autonomously find areas of the state-space that were unexplored, stopping before a possible
failure. The general algorithm follows these steps: we gather m demonstrations before retraining
the networks, then repeat until we obtain additional N demonstrations. Hence, in Passive Learning
and Active Learning we use the same number of demonstrations, 2N . We then test the performance
of the two Policy Networks on the M test configurations of the task. This method also got very
interesting results without using the Dynamics Network, measuring uncertainty only on the current
state. Algorithm 1 in the Appendix is a generalization of what described here, were we assumed γ,
the ratio of active demonstrations, to be equal to 1/2 for simplicity.

4 Experiments

In this section we describe the experiments we designed to benchmark the performance of our
method on different manipulation tasks1. We furthermore empirically measure the ability of the
method to predict failure before it happens.

4.1 Active Learning Performance on Test

We evaluate our Active Learning algorithm against the classic passive learning approach, as de-
scribed on Section 3. The two manipulation tasks are 1 Cube pick-and-place and 2 Cubes stacking.
All experiments are repeated several times with different random seeds. For each task, we measure
how many test instances are solved by each method, repeat the training and testing process with
different seeds, and in Table 1 we show on how many seeds one method outperforms the other. We
show in Table 1 the results of the Active Learning (AL) algorithm against the Passive Learning (PL)
one. In Autonomous AL, the robot tries to complete the task but stops if the uncertainty grows
over a threshold mid-execution, then stops and the expert provides a demonstration from there (as
described in Algorithm 1 in the Appendix and in section 3). Autonomous AL has been tested both
with and without imagined rollouts, showing similar results. In Figure 2 we show how increasing the
ratio of AL demonstrations increases performance, as expected. The greatest impact of the Dynam-
ics Network and imagined rollouts can be seen in section 4.2. We also tried Manual AL, where the
expert can move the initial configuration and desired goal until the computed uncertainty surpasses
a threshold. We tested this approach only on the 1 Cube Pick-and-Place task, measuring uncertainty
on current state only, with no imagined rollouts, surpassing Passive Learning 33 times out of 50.

1Code can be found at https://sites.google.com/view/robotactivelearning/.
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Task name Aut. AL-PL - No
rollouts

Aut. AL-PL - 5
steps

Fetch 1-Cube pick and place 22-3 21-4
Fetch 2-Cubes Stack 10-2 10-2

Table 1: Experimental results of Active Learning (AL) against Passive Learning (PL). We show
how many times AL obtained a better performance on the test set, and how many times PL did. AL
outperforms PL in both methods and tasks by a significant margin.

Figure 2: Left: How test-time performance varies as we modify the ratio of Active Learning exam-
ples over Passive Learning ones, γ. The plot represents the average number of successes over 13
different experiments. Right: How the averages of failure prediction performance and number of
real-world steps needed to predict failures change when modifying the number of look ahead steps
in imagined rollouts. Notice how up to 5 steps performance doesn’t degrade, while the number of
steps is significantly lower.

4.2 Unsupervised Failure Prediction

We experimentally demonstrate the ability of the proposed method to predict failures from the cur-
rent state and desired goal, trying to minimize the steps needed. We sample N instances of the task
and train a Policy Network, Dynamics Network and Uncertainty Network on the collected demon-
strations. Then, we sample M test instances of the task. We compute the agent’s uncertainty online
and predict a failure (and stop the execution) if it surpasses a threshold. We then let the robot com-
plete the task, and record if the task would’ve been a success or a failure. We finally compute the
true/false positives/negatives and the F1 score. We compared the performance on failure prediction
of the proposed Denoising Autoencoder with respect to dropout-based computation of uncertainty as
proposed in Menda et al. [2018], Kelly et al. [2019]. In Figure 2 we show how changing the number
of look-ahead rollout steps using the Dynamics Network affects the failure prediction performance
and the real-world steps after which the agent is able to predict failure, demonstrating the poten-
tial positive impact on safety of the imagined rollouts of our method. On the 1-Cube Pick-and-Place
task, our method achieves 0.80 F1 score at predicting failures online, on par with the performance of
a dropout-based method. On the 2-Cubes Stacking task, our method, without using future rollouts,
achieves 0.56 F1 score, compared to 0.50 of a dropout-based method. Hence, in our experiments
the proposed method had comparable or slightly superior performance, measured as F1 score, while
being considerably faster given the need for only a single feed-forward pass.

5 Conclusion

We proposed a new method for Active Learning in robotic manipulation tasks, based on a Denoising
Autoencoder for uncertainty prediction, and an interplay between policy networks, dynamics models
and uncertainty networks. We demonstrated how this method significantly improves task-solving
performance. We also demonstrated how the use of imagined future rollouts helps the agent predict
failures in fewer steps, hence avoiding coming close to dangerous configurations. These experiments
overall showed very interesting results, and as future work we will investigate the method further,
extending it to more scenarios, and to real robots.
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Appendix

Algorithms

In this section of the Appendix we describe in more detail the proposed algorithms. Algorithm 1
presents the steps taken in the Active Learning procedure. We define unc rollout as the function
that computes the uncertainty using the Dynamics Network for predicting future states and their
predicted uncertainty, describing it in Algorithm 2.

Algorithm 1 Active Learning with Uncertainty Networks - Autonomous Variant
Initialize demonstrations set D = {}, Policy, Dynamics and Uncertainty networks fθ, dγ , gφ,
total desired demos N , active learning demos ratio γ, steps-to-retrain µ.
# Start collecting a fraction of the total desired demos in passive learning to train the networks.
for i in N(1− γ) do

Sample task instance.
Collect demo in the form di = (s0, a0, ..., sT , aT ).
D ←− D ∪ di

end for
Train networks on D.
# Collect demos with Active Learning. Retrain every µ steps, stop at N total demos.
for i in γN/µ do

for j in µ do
Sample task instance.
while Task is not finished/failed do

Measure uncertainty ut = unc rollout(st, fθ, dγ , gφ, steps), compute next action at =
fθ(st).
if ut > uthr then

Stop execution, collect expert demo from st as di = st, at, ..., sT , aT .
D ←− D ∪ di
Break While.

end if
Execute action at, obtain observation st+1.

end while
end for
Train fθ, dγ , gφ on D.

end for

Algorithm 2 Function unc rollout()
INPUTS: current state si, Policy Network fθ, Dynamics Network dγ , Uncertainty Network gφ,
number of future steps steps.
Initialize utot ←− 0.
for i in steps do

Predict uncertainty and add to total. utot ←− utot + gφ(si)
Predict action ai ←− fθ(si).
Predict next state si+1 ←− si + dγ(si, ai)
si ←− si+1

end for
Return utot/steps

Hyperparameters and details of experiments

In this section we describe the hyperparameters and architectures we used in our experiments. We
used the OpenAI Gym Fetch environment (Brockman et al. [2016]) for our experiments, that was
modified to add the 2 Cubes scenario. The 1 Cube scenario has an observation space of 31, describ-
ing positions, velocities and orientations of end-effector and objects and desired goal position, and
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an action space of 4, describing cartesian velocities and gripper position. The 2 Cubes scenario has
an observation space of 49 and same action space.

Table 2: Architectures of Policy Network (PN), Denoising Autoencoder (DAE) and Dynamics Net-
work (DN). We describe the hidden nodes’ sizes (HS), number of hidden layers (HL).

Task name PN HS PN HL DAE HS DAE HL DN HS DN HL
1 Cube Pick-and-Place 128 2 8 2 128 4
2 Cubes Stacking 128 2 32 2 128 4

Table 3: Hyperparameters of Algorithm 1 on the various experiments reported in Table 1.

Experiment name N demos γ µ uthr
1 Cube Aut. AL-PL - No rollouts 60 0.5 5 1.5 error on train set
1 Cube Aut. AL-PL - 5 steps rollouts 60 0.5 5 6 error on train set
2 Cubes Aut. AL-PL - No rollouts 300 0.5 25 1.1 error on train set
2 Cubes Aut. AL-PL - 5 steps rollouts 200 0.5 5 1.1 error on train set
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